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Zusammenfassung

Die vorliegende Arbeit behandelt die Analyse und das Design funktionaler nanoopti-
scher Strukturen mit Hilfe modaler Methoden. Diese basieren auf dem Reziprozitätstheo-
rem der Elektrodynamik und erlauben es, den machtvollen mathematischen Apparat der
Funktionalanalysis und Operatorenalgebra analog zur Quantenmechanik zu benutzen. In
seiner klassischen Formulierung gilt diese modale Behandlung allerdings ausschließlich
für hermitesche Operatoren, d.h. verlustfreie Systeme.

In der Nanooptik, speziell im Gebiet der Plasmonik, spielt des Verhalten von Metallen
bei optischen Frequenzen eine tragende Rolle. Diese zeichnen sich durch hohe dissipative
Verluste aus, die im Rahmen der verlustfreien modalen Theorie nicht mehr störungstheo-
retisch behandelt werden können.

Beim Vorliegen einer nicht-hermiteschen Eigenwertgleichung für das elektromagneti-
sche Feld muss ein Übergang zumadjungiertenmodalen Formalismus vollzogen werden.
Während die gewonnenen Ausdrücke ihre intuitive physikalische Interpretation im Zu-
sammenhang mit Energie und Energie�ussdichte verlieren, können die wesentlichsten
mathematischen Eigenschaften erhalten werden. Diese sind die Orthogonalität der Ei-
genfunktionen, welche in eine Biorthogonalität bzgl. eines adjungierten Modenpaares
übergeht, sowie die Vollständigkeit des aus ihnen aufgespannten Vektorraumes, welche
die Entwicklung von Lösungen der Helmholtzgleichung in Eigenfunktionen überhaupt
erst ermöglicht. Die adjungierten Moden stehen hierbei physikalisch im Zusammenhang
mit den rückwärts propagierenden Moden eines optischen Systems.

Nach der einführenden Darstellung des mathematischen Formalismus wird dieser in
der vorliegenden Arbeit auf das Problem einer Verallgemeinerung des Impedanzbegriffes
für die Nanooptik angewandt. Ziel ist es, einen Ausdruck zu �nden, der eine Berechnung
von komplexen, zusammengesetzten Systemen in Analogie zur Elektrotechnik ermög-
licht. Ausgangspunkt ist die Inversion der formalen analytischen Lösung für die modalen
Re�exionskoef�zienten an der Ebene zwischen zwei verschiedenen, beliebigen optischen
Systemen. Es wird gezeigt, dass eine skalare Behandlung ausschließlich möglich ist für
den Fall, dass die physikalische Interaktion über jeweilsein dominant interagierendes
adjungiertes Modenpaar in beiden Systemen geschieht. Dies ist dieFundamental Mode
Approximation (FMA), deren Gültigkeit von zentraler Bedeutung ist für die Beschreib-
barkeit photonischer Strukturen analog zu homogenen Materialien durch sog. effektive
Parameter.

Unter dieser Voraussetzung wird ein verallgemeinerter Ausdruck für das Impedanzver-
hältnis zweier photonischer Strukturen hergeleitet und es wird gezeigt, unter welchen
Voraussetzungen sich die Beiträge der unterschiedlichen Eigenmoden so trennen lassen,
dass sich für beide Strukturen ein Absolutwert für die Impedanz angeben lässt. Im Fall ei-



nes Surface Plasmon Polariton (SPP) wird die Rechnung explizit analytisch durchgeführt
und ein Ausdruck für die Impedanz eines SPPs gewonnen, der in völliger Analogie zur
Verwendung des Begriffes in der Elektrotechnik steht. Zur Verdeutlichung dieser Analogie
wird gezeigt, dass die in der Elektrotechnik gebräuchlichen Ausdrücke für Impedanzen
verschiedener Strukturen wie Mikrowellen-Wellenleitern als Spezialfall perfekter Leiter
in dem hier dargelegten Formalismus enthalten sind. Die gewonnen Ergebnisse werden
weiterhin anhand der Beispiele eines BRAGG Re�ektors für SPPs und der Kopplung in
einen nanostrukturierten Wellenleiter illustriert.

Im Bereich der Nanoantennen wird das adjungierte Modenpaar durch ein- und aus-
wärts propagierende Moden der lokalisierten Struktur gebildet. Der Resonanzmechanis-
mus einer Antenne wird in der Arbeit so beein�usst, dass die veränderte modale Kopplung
an die Umgebung die Rückkopplung und damit die Antennenresonanz verstärkt. Konkret
wird eine Gitterstruktur mit einem B RAGGGitter zweiter Ordnung zu diesem Zweck ein-
gesetzt. Die Realisierung erfolgt durch Hinzufügen einer Ringstruktur zu einer zentralen
Nanodisk mittels fokussiertem Ionenstrahlschreiben. Die Eigenmoden sind durch Hankel
SPPs gegeben. Die experimentelle Charakterisierung durch Scanning Near-Field Optical
Microscopy (SNOM) und nichtlineare Photoemission Electron Microscopy (n-PEEM) be-
stätigt eine Erhöhung der zentralen Intensität um einen Faktor � 5. Zur Interpretation
der n-PEEM Bilder wird in der Arbeit ein Modell entwickelt, dass die Phototelektronen-
ausbeute semiklassisch unter der Annahme einer Proportionalität zur Absorptionsrate für
3-Photonen-Absorption als zeitliches Integral der beitragenden Komponenten des elektri-
schen Feldes beschreibt. Eine sehr gute Übereinstimmung mit rigorosen Simulationser-
gebnissen und analytischen Überlegungen zu Hankel SPPs wird demonstriert.

Der letzte Teil der Arbeit behandelt die Hybridisierung eines adjungierten BLOCH Mo-
denpaars mittels einer lokalisierten plasmonischen Partikelresonanz. Das konkret behan-
delte System untersucht dielektrische Schichtwellenleiter auf denen ein regelmäßiges
Gitter aus plasmonischen Nanostrukturen aufgebracht ist. Zum Einsatz kommt die sog.
Cut-Wire Pair Geometrie, die eine effektive magnetische Antwort des Systems bei opti-
schen Frequenzen zu erzeugen vermag. Es wird demonstriert, dass eine Anregung der
plasmonischen Strukturen durch die longitudinale Komponente des elektrischen Feldes
der fundamentalen Wellenleitermode möglich ist. Die Dispersionskurve des hybridisier-
ten Zustandes zeigt eine über die Gitterperiode und Partikelgröße spektral einstellbare
Resonanz. Während diese bei dichten Gittern, d.h. kleiner Periode, die erwartbare Signa-
tur der Lorentz-förmigen Resonanz des plasmonischen Partikels zeigt, verändert diese
ihre Form je näher die plasmonische Resonanz der Bandkante kommt, wo eine Hybri-
disierung mit der adjungierten Rückwärtsmode einsetzt. Es treten einstellbare Wende-
punkte, Punkte unendlicher Gruppengeschwindigkeit und Bereiche mit negativer Grup-
pengeschwindigkeit in der Dispersionskurve auf. Diese Ergebnisse müssen im Lichte der
Literatur über die Gruppengeschwindigkeit in dissipativen Systemen gesehen werden, die
in einer »adjungierten Feldgeschwindigkeit« ihre Verallgemeinerung auf den dissipativen
Fall �ndet, wie bereits vor einigen Jahren gezeigt wurde. Neben der Möglichkeit des Ein-
satzes in der integriert optischen Sensorik stellt das hier untersuchte System daher eine
einfach herzustellende Plattform für die Erforschung extremer Lichtzustände dar.
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I. Introduction

Light has fascinated and stimulated the mind of the physicist ever since. Nothing else

has so much in�uenced the advancement of our understanding about nature. It was

the �rst phenomenon that was described in a quantized manner by PLANCK [ 1] , led to

a new understanding of space and time[2, 3] , and thus witnessed the birth of the two

most important theories in contemporary Theoretical Physics. The question whether light

should be described by rays, waves or particles has been a longstanding issue.

A convincing solution was found when HERTZ proved that light is an electromagnetic

�eld [4, 5] in the sense that MAXWELLhad described[6] . This is still the state-of-the art

when describing light: We either treat it as a classical �eld by M AXWELL's equations or as

a quantized �eld. Within this thesis, we do the former.

The problem of describing light was now conceptually shifted to the realm of mathe-

matical �eld theory. Its behavior is »encoded« and somehow hidden from the physicist in

the �eld equations for which the mathematician develops strategies how to solve them.

HELMHOLTZand GREENcontributed signi�cantly to the mathematical understanding and

two principle methods evolved: The modal method which describes the problem in terms

of the eigenfunctions of a �eld operator or the G REEN's function method which describes

the response of the system to a point-like excitation in space or time (or both).

This thesis is entirely devoted to the �rst method and we want to develop a modally

resolved picture of the scienti�c questions we encounter in this thesis. Modal methods

largely rely on the �ndings in the mathematical �eld of functional analysis [7] . The

properties of the modes depend entirely on the properties of the �eld operator. In our

case, this will be the HELMHOLTZoperator introduced in Chapter II . In analogy to quantum

mechanics one often calls any operator under consideration the »Hamiltonian«Ĥ of the

system.

In quantum mechanics, the property of utmost importance is that Ĥ is self-adjoint,

which is the case when it is real-valued. In optics, this is realized when the involved

materials are lossless,i. e. no dissipation occurs. For decades, this requirement has not



I Introduction

been much of a problem for the �elds in optics where modal methods are used extensively,

namely resonator, �ber and waveguide optics, although authors like SIEGMAN argued

already in the 1970s that a laser cavity as an open resonator is not free of dissipation and

requires a generalization of the theoretical framework [8–10] .

In the last decade, the research area of plasmonics and nanophotonics emerged. The

driving force was the possibility to overcome ABBE's diffraction limit [11] and »squeeze

more light into tinier space«. However, the designs largely depend on the use of noble

metals at optical frequencies which suffer from high Ohmic losses. In this way, we have to

deal with a non-selfadjoint operator and its eigenmodes. The question on the implications

for quantum mechanics was treated since approximately the same time[12, 13] . Hence,

we have to come to a modal understanding of dissipative systems.

The tremendous increase in available computational power during the last three deca-

des has caused a paradigm shift in applied photonics. It is possible today to solve Max-

well's equations with ab-initio (also called rigorous) techniques even for very complicated

3D problems. But how can we bridge the gap between the fundamental theory and bare

computational results? The chosen numerical method has to provide more than just the

electromagnetic �eld solution and modal methods are very well suited for this purpose

[14–18] . It is important that we can �nd model parameters which describe the systems

we wish to treat in a simple way. One extends the applicability of a certain concept by

generalizing the underlying quantities. This became known as the »effective parameter«

approach, especially when dealing with man-made photonic crystals and metamaterials.

These two concepts make use of sub-wavelength ingredients below the diffraction limit

with the aim to manipulate the �ow of light in ways which are not achievable by using

just the homogeneous materials alone[19, 20] . If the effective parameter approach is

successful, the structure can be treated as if it was a genuine homogeneous material.

Among such parameters, the »refractive index« and the impedance gained the most im-

portance.

Especially the impedance has a long history in electromagnetics. Since its introduction

by HEAVISIDE[ 21] just about the same time HERTZdiscovered the electromagnetic waves,

the impedance gained the meaning of a »wave resistance« and represented the ratio of the

electric to the magnetic �eld strength for a plane wave. However, SCHELKUNOFFpointed

out already in the 1930's that the impedance must be seen as a property of the wave

in the medium rather than the medium alone [22] . The quantity quickly became the

most important one for the emerging �eld of electronics and allowed the construction of

5



I Introduction

complicated circuits by simple components such as coils, capacitors and resistances.

Optics did, however, not so strongly bene�t from the impedance framework, since the

ratio E=H is not spatially constant, e. g. in an optical waveguide. Proposals how to heu-

ristically overcome this reached from taking just the ratio of the average �eld strengths,

the average of the ratio of them or line integrals in analogy to an »optical voltage« and

»optical current«, so that already in the 1960s a situation with mutually contradicting

de�nitions existed [23] .

Modern micro- and nanophotonics has brought up a multitude of structures for which

the applicability of an impedance concept would be highly bene�cial. The �rst research

area in modern photonics where the question was treated again was the �eld of lossless

photonic crystals. The same heuristic approaches were made and, not surprisingly, led to

unsatisfactory results, which were highly geometry-dependent[24–26] . A promising ap-

proach was found in the so-called »BLOCH-impedance« – the ratio of the surface-averaged

electric and magnetic �eld components – which was shown to be an analytical solution

being compatible with M AXWELL's equations[27, 28] . The applicability of this quantity

has a prerequisite, namely the »Fundamental Mode Approximation« (FMA), which was

later on also applied to the delicate task of assigning effective parameters to metamate-

rials. It was shown that the validity of this approximation is a general requirement for

describing a metamaterial by effective parametersat all [ 29–34] . We will come back to

this point later in the thesis.

A violation of the FMA requires that the concept of a scalar impedance value must

be abandoned. LAWRENCEand co-workers showed that, for frequencies above WOOD's

anomaly [35] , impedance matrices have to be introduced[36–38] .

In plasmonics, with the vision of integrated circuits at optical speeds in mind, one tried

to stretch the understanding of the radio wave frequency domain to optics. Especially

ENGHETA, ALÙ and co-workers contributed substantial work to the �eld of »lumped cir-

cuit« elements for optics[39–42] . The similarity in the working principle of a plasmonic

metal-insulator-metal waveguide1 and a hollow-core waveguide in the RF regime, for

instance, facilitated the use of traditional concepts for this kind of structure [43–45] . Ho-

wever, this requires that the quasi-static limit is reached and that heuristic analogies can

be found for a speci�c structure. The impedance of a dipole emitter or nanoantenna in

the dipole-limit was also alternatively de�ned by G REFFETand co-workers in conjunction

with the quantum-optical G REEN tensor [46] .

1This is a structure where sub-wavelength waveguiding occurs in a dielectric which is sandwiched between
two noble metal layers.

6
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Nanoantennas. Soon after the discovery of electromagnetic waves, the natural question

was how to ef�ciently convert localized electromagnetic energy into propagating one and

vice versa. The �rst wireless transmission experiments were carried out by MARCONI in

the Swiss Alps in 1895. In his Nobel Prize speech of 1909[47] , MARCONI referred to the

transducers he used as »antennas«.

It is interesting to note that the principal idea of using light scattering from very small

particles as a nanoscale light source was developed quite fast. It was SYNGEwho expres-

sed this idea in a letter to EINSTEIN in 1928 [48] . However, it was viewed more as a

problem of microscopy instead of an »electronics-for-light-problem«.

The following decades saw a tremendous development of antenna theory, technology

and applications in the RF regime, with an ever increasing frequency of operation up to

the lower GHz band used for modern wireless communication. These efforts were accom-

panied by another strong driving force of 20th century technology: miniaturization. With

the invention of the transistor and breathtaking advancements in solid-state physics in

the background, brilliant minds such as FEYNMANstarted to realize that a manipulation of

matter on the nano- or even atomic scale should in principle be possible. In his visionary

talk »There's plenty of room at the bottom« [49] , he correctly envisioned nanoscience as

an entirely new �eld of physics, which would be not so much driven by new fundamental

insights into nature, but by the tremendous possibilities for technological applications.

The subsequent technological advances revolutionized the �eld of electronics in the last

decades of the 20th century.

Building antennas for the optical frequency domain came in reach with the advance-

ments of nanofabrication technology and promised to solve a conceptual problem that

light emission has. Due to the diffraction limit, the free electromagnetic �eld cannot

localize on length scales smaller than half of the wavelength. A quantum emitter like a

radiating atom is, however, much smaller and there is a huge impedance mismatch which

makes the process inef�cient [50, 51] . The near-�elds of nanooptical systems are needed

to bridge that gap.

Since the 1980s, optical nanoparticles have been used as antennas, �rst in the �eld

of Scanning Near-Field Optical Microscopy (SNOM)[52–64] and in the enhancement of

light emission [65–73] . A scanning probe is used to sample the photonic near-�eld, which

was at �rst also viewed as an antenna problem. Nonlinear spectroscopy, like Surface- or

Tip Enhanced Raman Spectroscopy, bene�t greatly from nanoantennas[74–84] .

There are strong efforts in research to replace current electronic devices by photonic

7
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ones. This »optical circuitry« has inspired nanoscale light generation, routing and emit-

ting devices. Plasmonics could play a great role to reduce the size of the devices due

to its ability to overcome the diffraction limit. Nanoantennas are the key ingredient to

compensate the mismatch between free-space radiation and the nanoscale circuit[ 85–

90] . Key features for interconnects such as tuning[91–95] , electric detection [96, 97]

or generation of surface plasmons[98–101] involved nanoantennas and displayed the

enormous potential of this development.

The spectrally broad metallic nanoantenna resonance promises also a high temporal

resolution [102] . Electromagnetic energy can thus be localized both in space and time

on a very small scale, enabling »coherent control« over the �elds[103] . The availability

of reliable ultrafast laser sources together with the possibilities of nanoantennas have led

to the demonstration of complete spatiotemporal control over the electromagnetic �eld

[104–107] .

It should be mentioned that other modern developments and keywords such as sur-

face plasmon lasing (SPASER)[108–114] or the creation of arti�cial photonic sheets and

materials (»metamaterials« and »metasurfaces«) have also been addressed in the context

of optical nanoantennas [115–118] and exploit their properties. The lines are blurred

between the research areas and one might quickly get the impression that in nanooptics

»everything is an antenna«, which is neither fully true nor fully false. In this thesis, we

have concentrated on works where the classical antenna functionality as a receiving or

emitting transducer between the nanoscale and the far-�eld was in the focus.

The quantity of utmost importance for a nanoantenna is the »quality factor«Q, which is

proportional to the ratio between the stored energy and radiated power at the resonance

frequency [51, 119, 120] . It is the central goal for nanoantenna design, to increase this

value.

A multitude of geometries had been suggested to build nanoantennas for the optical

frequency range. The simplest is the monomer, which makes use of the localized reso-

nance of a single particle. The theory of MIE, published as early as 1908, provided an

analytical solution for the light scattering from a spherical nanoparticle [121] . It is pos-

sible to fabricate such particles chemically in solution, which increases their availability.

Consequently, one of the �rst intensively investigated nanoantenna geometries were sp-

heres or spheroid particles[66, 67, 122] . Another design are rod-type structures which

function as an open cavity [123–131] . The recent years have also brought a different

type of monomer nanoantenna, the all-dielectric one, which makes the �rst two M IE

8
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resonances overlap spectrally in a high-index dielectric[118, 132–141] . Another interes-

ting approach is the »traveling wave« antenna which is also of the all-dielectric type and

exploits the leakage radiation of guided modes into their surrounding [142]

In analogy to the RF regime, also dimers were used as nanoantenna where the gap bet-

ween two particles acts as a feed[143–145] . The two monomer plasmon modes interact

strongly, which leads to the effect of hybridization [146] . The energy levels split into a

lower-frequency »bonding« mode and a higher frequency »antibonding« one, a termino-

logy which stems from the hybridization of atomic orbitals in molecular physics [147] .

Due to their multipolar characteristics, they are referred to as »bright« and »dark« modes

[148] . When spheres are used as constituents for the dimer, the current density in the

metal can be reduced compared to other geometries[149] . This leads to lower Ohmic

losses and a higher radiation ef�ciency of the antenna[150] . This design is found to be in

remarkable similarity to the original experiments by H ERTZ, but several orders of magni-

tudes higher in frequency. A similar consideration led to the »bow-tie« design, involving

two facing triangles with edges as sharp as possible and a very small gap in between

[151–154] . The sharp edge is enhancing the electric �eld and leads to a spectrally bro-

adband operation. However, the achievable enhancement factors are usually limited by

fabrication characteristics, so that bow-tie antennas may be outperformed by dipole-rod

antennas in practice [51] .

Apart from these relatively simple monomer or dimer geometries, there were efforts

to increase the functionality by lending concepts from RF engineering,e. g. to introduce

directionality (Y AGI-UDA-antenna) [71, 72, 155–157] or polarization dependence [158,

159] . An interesting class of structures is created by exploiting BABINET's principle [160] .

Instead of creating a certain structure from noble metal on a substrate, a hole with almost

arbitrary shape is milled into a metal �lm. Such holes or hole-arrays were created with a

multitude of shapes, from simple circular geometries [161, 162] over C-shaped designs

[163] to bow-ties [164, 165] . They may also make use of the effect of extraordinary

optical transmission (EOT), where a constructive interference of excited surface waves

leads to an unexpected peak in device throughput[166] .

Structure of this thesis

Within this thesis, we will entirely use the modal formalism to analyze and design functi-

onal nanophotonic structures. Chapter II lays the foundations for the mathematical fra-

9
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mework in the form of the adjoint modal formalism, which is fully valid for dissipative

systems. We will employ a description entirely based on a modal decomposition into

adjoint modes and also introduce the numerical means used to calculate these modes.

In Chapter III , we apply the formalism to the question how a rigorous impedance de�-

nition can be found that generalizes the concept from the radio frequency to the optical

range. We will give a number of examples and show the consequences of the general

formalism for certain important application cases.

The design of an enhanced nanoantenna lies in the focus of ChapterIV. The starting

geometry is a monomer rod or disc antenna. We analyze the localized mode with the

adjoint modal framework and introduce a secondary structure whose modes increase the

internal modal feedback of the monomer. In this way, we increase the quality factor of the

antenna. We investigate the approach experimentally by using SNOM and multiphoton

Photoemission Electron Microscopy (n-PEEM).

Chapter V investigates the coupling between a dielectric waveguide and plasmonic na-

noparticles placed on top of it. A metasurface of particles covering the waveguide is

producing a hybridization into a Waveguide Plasmon Polariton state which shows ex-

treme dispersion characteristics such as superluminality or negative group velocity. We

discuss this properties in the light of the adjoint modal formalism and discuss possible

applications of the system.

It is not possible to do such a work alone. When implementing the aperiodic exten-

sion of the Fourier Modal Method (FMM) according to works of L ALANNEand co-workers

[167–172] , I used the anisotropic core of the modesolver which T. PAUL, Institute of Con-

densed Matter Theory and Solid State Optics Jena, had implemented following the paper

of NOPONEN and TURUNEN [ 173] . The rigorous simulation using the Finite Difference

Time Domain (FDTD) method in Chapter IV was performed by J. QI from the same insti-

tute. The fabrication of the samples in ChaptersIV and V was performed by M. STEINERT

(Focused Ion Beam Milling) and C. HELGERT(electron beam lithography), respectively.

Both are hosted at the Institute of Applied Physics, Jena. The SNOM experiments in

Chapters IV and V have been performed together with A. KLEIN and S. DIZIAN at their

setups in the same institute. The n-PEEM experiment was performed by M. FALKNERwho

also works at the Institute of Applied Physics in Jena.

10



II. Theoretical and computational

concepts

In this chapter, we will lay the mathematical foundations for the adjoint modal frame-

work. To present a complete picture, we derive all relevant quantities. The starting point

is a formulation of M AXWELL's equations as eigenvalue problem and a discussion of the

algebraic structure of the solutions when the HELMHOLTZoperator is non-Hermitian. As a

consequence, modal decomposition must be performed with respect to the biorthogonal

adjoint mode set. We clarify the nature of these modes and outline a numerical method

used in this thesis to calculate them, namely the aperiodic Fourier Modal Method.

2.1. Electromagnetic wave propagation as mathematical

eigenvalue problem

2.1.1. From Maxwell to Helmholtz

This thesis operates within the realm of classical electrodynamics. The theoretical des-

cription is based on MAXWELL's equations for the electromagnetic �elds. For all considera-

tions, we will need the macroscopic �elds in matter. In time domain, the basic equations

in their most general form read as [174]

r � Ē(r, t ) = �
@̄B(r, t )

@t
r � D̄(r, t ) = �̄ (r, t )

r � H̄(r, t ) = j̄(r, t ) +
@̄D(r, t )

@t
r � B̄(r, t ) = 0.

(2.1)

Quantities in the time domain will have a bar over the symbol. They will be used in the

discussion considering the nonlinear Photoemission Electron Microscopy of a nanoan-

tenna sample by the aid of ultrashort pluses. The temporal dependence is treated in the
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slowly varying envelope approximation, which will be explained in more detail there.

Throughout the largest part of the thesis, we will look for stationary solutions of Eqs. (2.1)

at a �xed frequency ! and most of the equations are in the FOURIERdomain, which will

have no special symbol decoration.

Throughout this thesis, we choose an exp[ � i ! t ] time-dependence. In frequency dom-

ain, MAXWELL's equations will then take the form

r � E(r, ! ) = i ! � B(r, ! ) r � D(r, ! ) = � (r, ! )

r � H(r, ! ) = j(r, ! ) � i ! � D(r, ! ) r � B(r, ! ) = 0.
(2.2)

We have to specify now the material model we will assume. The �rst assumption con-

sidersB. Since this work considers the optical freqency range, we will assume all media

to be non-magnetizable, i. e. B(r, ! ) = � 0 � H(r, ! ), which is a meaningful consideration

from the point of view of solid state theory [175] . This assumption must not be mixed up

with the occurrence of an effectivemagnetic response at optical frequencies which occurs

for some optical »meta«materials,e. g. the cut-wire pair structure described in Sec.5.1.

This is an effect of the modal scattering properties and thus the geometric structure at

the nanoscale, rather than the used materials themselves. This will be explained in more

detail in Chapter V.

In a second assumption we have to model the response of the bound and free electrons

in the materials we wish to consider. Throughout this thesis, we are interested in the

linear material properties except for Sec.4.2, where multiphoton-photoemission will play

a role and is treated separately there. The electric displacement covers the response of the

bound electrons to an external electric �eld by the polarization P(r, ! ) they create in the

matter. We assume an isotropic medium, which can be modeled by a scalar function. The

response to an electric �eld in frequency domain is described by the linear susceptibility

� (r, ! ) as

D(r, ! ) = � 0E(r, ! ) + P(r, ! ) = � 0 [ 1 + � (r, ! )] � E(r, ! ). (2.3)

For the contribution of the free electrons, we have to distinguish between charge �ow

due to external charges brought into the system (convective currentjconv due to an exter-

nal charge density � ext), and induced conductive currents jcond, which originate from the

redistribution of free charges within the system due to electromagnetic �elds. We assume

the absence of external charges and yet alsojconv = 0. Conductive currents redistribute

12
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the existing charges in a globally neutral system and give rise to an induced charge den-

sity � ind , which is linked to the conductive current jcond by the continuity equation in

frequency domain as[174, 176, 177]

r jcond(r, ! ) � i !� ind(r, ! ) = 0. (2.4)

The response of the free electrons to an electric �eld is in the linear case modeled by

OHM 's law

jcond(r, ! ) = � (r, ! ) � E(r, ! ) (2.5)

with the conductivity � (r, ! ).

With these considerations, we can rewrite the two MAXWELL equations in (2.2) that

have source terms as

r � H(r, ! ) = � i !� 0

•
1 + � (r, ! ) + i �

� (r, ! )
!� 0

˜
� E(r, ! )

r �

8
>>><

>>>:

•
1 + � (r, ! ) + i �

� (r, ! )
!� 0

˜

| {z }
de f
= " (r,! )

E(r, ! )

9
>>>=

>>>;

= 0.
(2.6)

The »complex permittivity«

" (r, ! ) = " 0(r, ! ) + i � " 00(r, ! ) = 1 + � (r, ! )
| {z }

bound charges

+ i �
� (r, ! )

!� 0| {z }
free charges

(2.7)

covers the response of bound as well as free electrons. Some care should be taken when

making use of this concept. The nomenclature can be misleading, since� (r, ! ), being the

FOURIER-Transform of a real-valued response functionR̄( r, t ), is already complex valued

by itself

P̄(r, t ) =

t�

�1

R̄(r, t � t 0) � Ē(r, t 0) dt 0, � (r, ! ) =
1

2�

1�

�1

R̄( r, t ) � e� i ! t dt . (2.8)

Especially in the spectral region of electronic transitions, � (r, ! ) has a signi�cant ima-
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ginary part as we will see in the next paragraph. There is a chance of mixing up the

complex with the »classical« permittivity or »dielectric function« 1 + � (r, ! ) from solid

state physics, which is a purely dielectric property [178] .

In summary, MAXWELL's equations in frequency domain will take the form

r � E(r, ! ) = i !� 0 � H(r, ! ) r � E(r, ! ) = �
r � " (r, ! )

" (r, ! )
� E(r, ! )

r � H(r, ! ) = � i !� 0" (r, ! ) � E(r, ! ) r � H(r, ! ) = 0
(2.9)

for our purpose.

The two curl equations in (2.9) can be decoupled by applyingr� and using the rela-

tions c = [ � 0� 0] � 1=2 and k0 = != c. The speed of light in vacuum is denoted byc. This

yields

1
" (r, ! )

� r � r � E(r, ! ) = k2
0 � E(r, ! )

r �
1

" (r, ! )
� r � H(r, ! ) = k2

0 � H(r, ! ).
(2.10)

The inverse of the permittivity " is called »impermittivity« in the literature. Eqs. ( 2.10)

are sometimes called the »generalized HELMHOLTZ equations«[177] . If we concatenate

the electromagnetic �elds into a single �eld vector

F(r, ! ) =

–
E(r, ! )

H(r, ! )

™

, (2.11)

one can concisely rewrite Eqs. (2.10) with a linear »H ELMHOLTZoperator« Ĥ which yields

Ĥ F(r, ! ) = k2
0 � F(r, ! ), Ĥ =

–
" � 1(r, ! ) � r � r� 0

0 r � " � 1(r, ! ) � r�

™

. (2.12)

Now, we have shown that the HELMHOLTZ equation is equivalent to an eigenvalue

problem with eigenvalues k2
0. From the mathematical point of view, the spectral pro-

perties1 of Ĥ determine the solution, which must still ful�ll the divergence conditions in

Eqs. (2.9). Especially questions of symmetry will play an important role, as will be dis-

1»Spectral« means from the point of view of spectral theory of linear operators in functional analysis here.
An excellent discussion for physicists is found in[7] .
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II Theoretical and computational concepts

cussed later. A powerful strategy to solve a particular problem is toexpandthe solution

into its eigenmodes and begin the analysis and design there, which is at the heart of this

thesis.

A signi�cant simpli�cation is achieved, when the problem is homogeneous or at least

piece-wise homogeneous. This case is of great importance for us in what follows. The

�elds become divergence-free as is evident from Eqs. (2.9). By using the vector identity

r � r � F = r � r F � � F, we then arrive at the classical HELMHOLTZ equation for the

electromagnetic �elds

�
� + k2

0 " (! )
�

� F(r, ! ) = 0. (2.13)

SinceĤ is a diagonal operator in the generalized Eq. (2.12) as well as in the homogene-

ous form (2.13), we have decoupled the problem for the magnetic as well as the electric

�eld into two independent eigenvalue problems. This opens the possibility to solve for

one �eld and �nd the other from the respective M AXWELLequation. The magnetic part of

Ĥ in Eq. (2.12) has the advantage of being hermitian when " (r, ! ) is real [177] , which

signi�cantly simpli�es the computational effort to solve the equation [179] , e. g. for die-

lectric photonic crystal structures. However, since we want to consider lossy metallic

ingredients throughout this thesis, this leads to a non-hermitian problem anyway.

Boundary conditions. When describing piece-wise homogeneous structures which are

typical for optics, the transition of the �elds at the interface between two different media

with permitivities " 1(r, ! ) and " 2(r, ! ) has to be considered. These boundary conditions

follow directly by applying G AUSS' and STOKES' theorem to the MAXWELL's equations

(2.2)2. They read as

n � [E2(r, ! ) � E1(r, ! )] = 0 n � [H2(r, ! ) � H1(r, ! )] = 0

n � [ " 2(r, ! ) � E2(r, ! ) � " 1(r, ! ) � E1(r, ! )] = 0 n � [H2(r, ! ) � H1(r, ! )] = 0,

(2.14)

where n denotes the normal vector of the interface between the two media. The magnetic

�eld is continuous as well as the tangential components of the electric �eld. The normal

component of the electric �eld has a discontinuity which is characterized by the different

permitivities.

2This standard derivation is found in many texts on elementary electrodynamics like [174, 176] .
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Material response model. We have summarized the contributions from bound and free

carriers in the complex permittivity. How does its spectral behavior look like in a gen-

uinely homogeneous material? The answer can be developed from two simple models,

which are known as the LORENTZ (bound electrons) and DRUDE (free electrons) model.

We will use subscripts b and f for the different contributions.

The response of bound electrons can be assumed as a driven harmonic oscillator. The

differential equation for the displacement s̄(r, t ) of the electrons reads as

@2s̄b(r, t )

@t 2
+ 
 b �

@̄sb(r, t )

@t
+ ! 2

0 s̄b(r, t ) = �
e

me

� Ē(r, t ), (2.15)

where 
 b is a generic damping constant of the bound electrons' oscillation,! 0 is their

eigenfrequency, e the elementary charge and me the electron mass. The polarization

P̄(r, t ) is directly related to the collective dipole moments via

P̄(r, t ) = � Nbe� s̄(r, t ), Nb – number of bound charges. (2.16)

If we FOURIER transform and combine the two relations, we �nd an expression for the

frequency dependent susceptibility

� (! ) =
f

! 2
0 � ! 2 � i !
 b

, (2.17)

where

f =
1
� 0

�
Nbe2

me

(2.18)

is called the oscillator strength.

The movement of free electrons can be modeled without restoring force as

@2s̄f (r, t )

@t 2
+ 
 f �

@̄sf (r, t )

@t
= �

e
me

� Ē(r, t ). (2.19)

The conductive current is given by

j̄cond(r, t ) = � Nf � e�
@̄sf (r, t )

@t
, Nf – number of free charges. (2.20)
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If we abbreviate the equation by introducing the »plasma frequency«3

! 2
p =

1
� 0

�
Nf e2

me

(2.21)

and FOURIERtransform the differential equation, we �nd the expression for the frequency

dependent conductivity to be

� (! ) = � 0 �
! 2

p


 f � i !
. (2.22)

A particular material has a multitude of electronic transitions between bound states,

giving rise to multiple resonant frequencies ! 0,l = � El =~h, where � El is an energy diffe-

rence between two molecular energy levels and~h is PLANCK's constant. The combined

complex permittivity is thus found as

" (! ) = 1 +

8
>><

>>:

X

l

f l

! 2
0,l � ! 2 � i !
 b,l

| {z }
LORENTZ

9
>>=

>>;

�
! 2

p

! 2 + i !
 f| {z }
DRUDE

. (2.23)

It summarizes the contributions from bound and free electrons. An important limiting

case are dielectrics for an excitation frequency in the transparency region which lies in

between two energy transitions ! 0,1 and ! 0,2. Without contributions from free charges

(! p = 0), this is a spectral region where the real part of the permittivity usually grows

with frequency (»normal dispersion«. The imaginary part of the permittivity is negligible

there and loss can be treated perturbativly from the loss-less solutions. The absence of

dissipation guarantees that the HELMHOLTZ operator in Eq. (2.10) is hermitian, i. e. all

eigenvalues are real. This assumption applies to most glasses and other dielectrics used

in traditional optics.

Another important case are metals at optical frequencies, where free electrons play the

most important role. If we summarize the dielectric background contributions with " 1 ,

one arrives at the DRUDE formula for the metal's permittivity in the case of an undamped

3The name originates from the fact that ! p appears as the eigenfrequency of the oscillating charge density
� (r, t ), which can be viewed as an oscillating plasma.
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electron motion ( 
 f = 0)

" metal = " 1 �
! 2

p

! 2
. (2.24)

For frequencies lower than ! p, the permittivity is negative. In this frequency range, a

special modal solution of Eq. (2.10) exists, which is at the heart of contemporary na-

nooptics, namely the Surface Plasmon Porlariton. We will derive this mode and discuss

its bene�cial properties in the next section.

Nanooptics is all about spatially structuring " (r, ! ) on a length scale smaller than the

wavelength of the used light. This can be done by manipulating the geometry of an

otherwise monolithic material, or by putting together materials which differ strongly in

their optical properties, such as dielectrics and a metals. We will discuss an antenna for

visible light, made entirely of gold as a representative of the �rst approach in Chapter IV,

and dielectric waveguides with incorporated plasmonic nanostructures as an example for

the second approach in ChapterV.

Since the light cannot fully »resolve« structural changes on such a small scale, it is

possible to in�uence the way how light behaves in these structures. Under certain prere-

quisites, such a nanostructured medium can be described by an »effective« response" eff,

which replaces the solid-state theory based material model. Even an effective magnetic

response� eff is possible, although all underlying materials are non-magnetizable. This

leads to the effect of negative refraction[180] . However, it turns out that the conditions

for such true »meta«materials are very hard to ful�ll in reality [29, 30, 33, 181] .

2.1.2. Modal methods for the Helmholtz equation

The HELMHOLTZ equation (2.12) is formulated as an eigenvalue problem for k2
0. One

�nds eigenfrequencies ! of the system, which are in general complex. The imaginary

part of ! is associated to the damping of the system. This form is well suited for �nding

localizedsolutions, e. g. for resonators, which constitute a cavity.

Within this thesis, we are interested in propagatingsolutions for a particular given real

frequency ! . We therefore choose our coordinate system in such a way thatz de�nes a

propagation direction4. Every solution to Eq. (2.12) can then beexpandedinto eigenmodes

4 We will deal with cylindrical symmetric structures in Sec. 4.1 so that the radial direction will play that
role there.
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as

F(r, ! ) =
X�

l

al � F+
l (r, ! ) +

X�

l

bl � F�
l (r, ! ), (2.25)

which fundamentally distinguishes forward (+ ) and backward (� ) propagating modes

with respect to z. The speci�c modal solutions F�
l (r, ! ) can then be further categorized

according to the symmetry properties of " (r, ! ). The modal parameter l can especially

be discrete, continuous or a mixture of both, which is indicated by summation sign su-

perimposed by an integral. We outline the three most important cases with relevance to

this thesis in the following.

Plane waves. The most simple symmetry is homogeneity,i. e. a continuous translatio-

nal invariance of " (r, ! ) in all three dimensions. Ĥ commutes with the unitary three-

dimensional translation operator. Both operators have joint eigenfunctions in this case

[7] , which can be written as a complex exponential

Fk � exp(ikr ), (2.26)

where Fk is a constant. This de�nes plane waves, the eigenfunctions of homogeneous

space. They present a generic complete functional basis, which will play an important role

for the numerical techniques described in the next section. Thewavevectork characterizes

the eigenfunction as a continuous parameter and depends on! as

k2 = k2
x + k2

y + k2
z = " (! ) �

! 2

c2
. (2.27)

This is the dispersion relationof plane waves.

Waveguide modes, strati�ed media. An important symmetry class, which is relevant

for waveguiding devices, is a continuous translational invariance only in the propagation

direction z. The symmetry demands a formF� ( x, y) �exp(i � (! )z) for the eigenfunctions.

The role of kz is played by the »propagation constant«, which is traditionally called � (! )

in the waveguide literature. We want to follow this tradition for readability. Eq. ( 2.13)
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can be adapted to form a new eigenvalue problem that depends parametrically on! as

•
� ? +

! 2

c2
" ( x, y, ! )

˜
F� ( x, y, ! ) = � 2(! ) � F� ( x, y, ! ), (2.28)

where � ? = @2=@x2 + @2=@y2 is the transverse LAPLACE operator. The permittivity

may exhibit additional symmetries in the transverse direction, which further classi�es

the solution. Since � � (! ) belong to the same eigenvalue, the solutions split into two

subspectra for forward and backward propagating modes. Later in this chapter, we will

identify them as the adjoint mode pairs and analyze their properties thoroughly.

Especially strati�ed structures composed of layers of piecewise homogeneous materials

play an important role in optics and for the following chapters of this thesis. The modal

solutions can be found analytically. Consider a structure which is composed ofS layers

in x-direction. We want to count them by the index m 2 [1 . . .S] . The structure has

a translational symmetry in y and z-directions. We are looking for solutions which are

invariant in y, so that (@ =@y = 0). The solutions split into two classes. The �rst has

only one non-zero electric �eld component Ey( x, z, ! ) (TE polarization) while the other

has only one non-zero magnetic �eld component Hy( x, z, ! ) (TM polarization). The

symmetry of MAXWELL's curl equations allows us to treat both simultaneously [182] if

we renormalize the magnetic �eld by H(r, ! ) 7! i [ � 0=� 0] 1=2 H(r, ! ). We will only refer to

a »principal« �eld component Fy( x, z, ! ) which represents both cases.

Since every layer is locally homogeneous, we can expand the principal component in

every layer into plane waves5

Fm
y ( x, z, ! ) =

�
am � eikm x + bm � e� ikm x

�
� ei � (! )z (2.29)

with the local dispersion relation

k2
m + � 2(! ) = " m(! ) � k2

0. (2.30)

The boundary conditions (2.14) demand the continuity of the tangential components at

the interfaces between the different media

Fm
y ( xm, z, ! ) = Fm+ 1

y ( xm, z, ! )

Fm
z ( xm, z, ! ) = Fm+ 1

z ( xm, z, ! ).
(2.31)

5Since we have excluded solutions withky 6= 0, only two plane waves remain in the expansion.
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The z-component is found from MAXWELL's curl equations to be

Fm
z ( x, z, ! ) =

qi

k0

�
@Fy( x, z, ! )

@x
qm =

8
<

:

1 (TE)
1

" m(! ) (TM)
. (2.32)

Inserting Eq. (2.29) and ( 2.32) into ( 2.31) yields a system of equations for the plane

wave amplitudes am and bm

am � eikm xm + bm � e� ikm xm = am+ 1 � eikm+ 1 xm + bm+ 1 � e� ikm+ 1 xm

qmamkm � eikm xm � qmbmkm � e� ikm xm = qm+ 1am+ 1km+ 1 � eikm+ 1 xm � qm+ 1 bm+ 1km+ 1 � e� ikm+ 1 xm.

(2.33)

It has the form

M̂ �

–
a

b

™

= 0, (2.34)

with a sparse system matrix M̂ . We set a1 = 0 and bS = 0 (no impinging radiation) in

order to solve for the self-consistent modal solutions, which are found from the condition

det M̂ = 0. We explicitly solve the S = 2 (single interface) and the S = 3 (slab waveguide)

case here due to their importance for later discussions.

S= 2: Single interface. The Surface Plasmon Polariton. The system of equations for an

interface at x1 = 0 reads as

–
� 1 1

� q2k2 � q1k1

™

�

–
a2

b1

™

= 0, (2.35)

and det M̂ = 0 yields

q1k1 + q2k2 = 0. (2.36)

Inserting the local dispersion relation Eq. (2.30) and solving for � (! ) yields

� (! ) = k0 �

�
q2

2" 2(! ) � q2
1" 1(! )

q2
2 � q2

1

� 1
2

. (2.37)
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No solution exists for TE polarization, while the TM solution reads as

� (! ) = k0

•
" 1(! ) � " 2(! )

" 1(! ) + " 2(! )

˜ 1
2

, (2.38)

and represents the dispersion relation of a surface wave. If one assumes a DRUDE-type

metal Eq. (2.24) and air as cladding, this speci�es to

� (! ) =
!
c

�

–
! 2 � ! 2

p

2! 2 � ! 2
p

™1
2

. (2.39)

There are three regions which are characteristic for all problems involving waveguide

eigenmodes:

� ! < ! p=
p

2: The propagation constant � (! ) is purely real while the k1,2 are purely

imaginary. The energy is exclusively transported inz-direction and called a »truly

bound« mode. In the case of a metal surface, this is the Surface Plasmon Polariton

(SPP) mode.

� ! p=
p

2 < ! < ! p: � (! ) is purely imaginary and does not transport energy in the

z-direction, the mode is »evanescent«.

� ! > ! p: � (! ) is purely real, as well as k2. The mode transports energy through

the cladding towards in�nity and is thus called »leaky«. A mode which is leaky to

both the substrate and the cladding is commonly called »radiative«.

Especially the SPP mode has attracted much attention in nanooptics, since its� (! ) diver-

ges for ! ! ! p=
p

2. This means that the effective wavelength� 0=neff(! ) tends to zero.

neff(! ) = � (! )=k0 is the »effective index« of a mode and allows for an easy comparison

to the refractive index n(! ) = [ " (! )] 1=2 of genuinely homogeneous materials.

When loss comes into play, the simple classi�cation into the three categories breaks

down and � (! ) becomes a mixed-complex quantity for every frequency. Mode loss is then

distinguished as intrinsic (due to absorption / dissipation) or radiative (due to energy

transport). Both mechanisms can take place for a mode at the same time.
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S= 3: Slab structure. If we de�ne x1 = 0 and x2 = d, with d being the thickness of the

slab, the system reads as

2

6
6
6
4

� 1 0 1 � 1

eik2d � e� k3d 0 e� ik2d

� q2k2 0 � q1k1 q2k2

q2k2 � eik2d � q3k3 � eik3d 0 � q2k2 � eik2d

3

7
7
7
5

�

2

6
6
6
4

a2

a3

b1

b2

3

7
7
7
5

= 0. (2.40)

The requirement det M̂ = 0 leads after some manipulation to

e� 2ik2d =
q2k2 + q1k1

q2k2 � q1k1

�
q2k2 + q3k3

q2k2 � q3k3

. (2.41a)

A more favorable form for numerical solution of this equation introduces the mode index

n = 0, 1, . . . and reads[182]

tan(k2d + n � � ) � i �
q2k2(q1k1 + q3k3)

q2
2k2

2 + q1q3k1k3

= 0. (2.41b)

A countable set of bound solutions exists for both polarizations, as well as a continuum of

leaky and evanescent modes. The number of bound modes depends ond and the " m(! ),

and can also be zero (waveguide at cut-off). This will be discussed in detail in Sec.5.1.

Periodic structures, Bloch modes. An important class of photonic structures possesses

a discretetranslational invariance, i. e. periodicity. This has profound implications for the

solutions of the underlying differential equations, �rst summarized by F LOQUET [ 183]

and later successfully applied by BLOCH [ 184] to describe electrons in a periodic poten-

tial by SCHRÖDINGER's equation. Its two-dimensional version [178] is formally identical

to Eq. (2.28), with " ( x, y, ! ) serving as the »potential« and� 2(! ) as the »energy« eigen-

value. This fact allows to extend the powerful concepts developed in quantum mechanics

to our problem, especially the concepts ofbands, but also tools from the mathematical

apparatus, such as the concept of a HILBERT space with an inner product or the DIRAC

notation. We will make extensive use of these concepts throughout this thesis.

The BLOCH theorem states that the eigensolutions of a structure which is periodic in

the z-direction with a period p are »quasi-periodic« and obey the form

F� b
(r, ! ) = ei � b(! )z � B� b

(r, ! ), (2.42)
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where B� b
( x, y, z+ p, ! ) = B� b

( x, y, z, ! ) is the truly periodic »BLOCH function«. The per-

mittivity may possess additional periodicity also in the other directions, leading to the the-

ory of photonic crystals (3D periodicity) or photonic crystal waveguides (2D periodicity)

[19] , where transverse Bloch wavevector components represent an additional degree of

freedom to parameterize the eigenfunctions. We keep the notation general and just de-

mand periodicity in the propagation direction here. The propagation constant � b(! ) pa-

rameterizes the eigenfunctions which are not unambiguous since� (! ) + n � 2�= p, n 2 Z

leads to the same mode. One thus limits its values to the �rst BRILLOUIN zone in recipro-

cal space� b(! ) 2 [ � �= p, �= p] [19, 177, 178] . The exponential prefactor modulates the

truly periodic B LOCH function when the mode advances from one unit cell to the next.

Strong effects from the periodicity can generally be anticipated, when � b(! ) is near the

center or the edge of the band diagram, especially due to the coupling of forward and

backward propagating modes. This will play a crucial role for the nanoantenna design in

Chapter IV.

The strength of the modal expansion technique lies in its ability to break down a phy-

sical phenomenon into its mathematical key ingredients. In quantum physics, this is of

utmost importance since the structure of the used operators de�ne what is »observable«

at all in the sense of a measurement. The physics is understood by the properties of the

eigenfunctions of the operators. We wish to exploit much of this concept for the under-

standing and design of nanophotonic structures in this thesis. From the mathematical

apparatus, the most important thing is an inner productbetween mode functions and the

orthogonality property, which we will derive now. This task is surprisingly subtle for op-

tics, as we will see in the following. Especially the presence of loss, which is inherent to

plasmonics, turns out to be a true game changer from the point of view of the underlying

theory.

Reciprocity. Conjugated, unconjugated, adjoint formulation. Mode orthogonality and

completeness. Besides the derivation of the HELMHOLTZ equation, the two curl equa-

tions in Eqs. (2.2) allow for a second powerful theorem known as LORENTZ reciprocity.

We consider two electromagnetic �eld solutions of M AXWELL's equations F1(r, ! 1) and

F2(r, ! 2) for the same geometry, i. e. " 1(r, ! ) = " 2(r, ! ) = " (r, ! ). By using the vector

identity r � (a� b) = b � (r � a) � a� (r � b) as well as the complex conjugate of Eqs. (2.2),
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we can deduce

r �
�
E1(r, ! 1) � H�

2(r, ! 2) + E�
2(r, ! 2) � H1(r, ! 1)

�
=

i
c
(! 1� ! 2)�H1(r, ! 1)�H�

2(r, ! 2)+
i
c

v
t � 0

� 0

[ ! 1" (! 1) � ! 2" � (! 2)] �E1(r, ! 1)�E�
2(r, ! 2)

(2.43)

For identical �elds at the same frequency, this expresses the local energy balance since

the LHS is proportional to the time averaged POYNTING vector hS(r)i = 1=4 � (E(r, ! ) �

H� (r, ! ) + c.c.), while the RHS represents the loss in energy characterized by" (! ) �

" � (! ) = 2" 00(! ), i. e. the imaginary part of " (! ).

If a structure is lossless, the permittivity is real and the RHS of the equation vanishes, if

two solutions at the same frequency! 1 = ! 2 = ! are considered. We want to investigate

this case and focus our attention on the modal �elds in a plane z = z0 = const., where z is

the propagation direction. Now and in what follows, we leave out the explicit dependence

of the �elds on (r, ! ) for readability. The indices now simply denote different solutions to

the same electromagnetic problem at the same frequency. When we apply the modi�ed

version of the GAUSStheorem for an arbitrary vector A6

�

( x,y)2R2

r � AdS =
@
@z

2

4
�

( x,y)2R2

A � ez dS

3

5 (2.44)

to Eq. (2.43) we get

@
@z

�

?

�
E1 � H�

2 + E�
2 � H1

�
� ez dS

| {z }
de f
= C (F1,F2)

= 0. (2.45)

In the following, the ? sign will refer to the transverse (x, y)-plane with ez as normal

vector, the transverse components of a vector, and so on. Eq. (2.45) is often referred to

as »the« LORENTZreciprocity theorem although we will see that it just represents the con-

jugated formulation build on a bilinear form C (F1, F2) making use of conjugate �elds.

It allows to derive the orthogonality relation of the components in the modal expan-

6This equation is quite central in the argumentation and used in [185] without explicit derivation. We the-
refore give this derivation from a variational principle in the appendix Sec. A1 and show its applicability
to all modal solutions including radiating ones.
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sion Eq. (2.25). If we consider z-invariant waveguides where the modal �elds vary as

exp(i � z), application of Eq. (2.45) reads

(� m � � n)

�

?

€
E� m

� H�
� n

+ E�
� n

� H� m

Š
� ez dS = 0, (2.46)

which implies

�

?

€
E� m

� H�
� m

+ E�
� m

� H� m

Š
� ez dS = C (F� 1

, F� 2
) = 4 � Sm� mn, (2.47)

where � mn is the KRONECKERsymbol and Sm is the modal POYNTING �ux, which constitu-

tes a mode-dependent constant. This property is the key for the modal expansion method

to be so powerful since we can immediately draw the following conclusions:

� Every forward mode is orthogonal to any backward mode.

� A particular mode in a given direction is orthogonal to all other modes in that

direction, except to itself. This holds also in the case of degeneracy[TK2009,

TK2010] . The constant modal POYNTING �ux Sm can be used for normalization.

� Since the HELMHOLTZ operator in Eq. (2.28) is trivially hermitian when " ( x, y, ! )

is real, the completeness of a basis from its eigenmodes is algebraically ensured.

� Since� 2 appears as the eigenvalue in Eq. (2.28), the for- and backward modes with

� � form a complete set each and an orthonormal basis in a HILBERTspace formed

by all electromagnetic �eld solutions to the lossless HELMHOLTZ problem with the

inner product C (F� m
, F� n

).

� When the modes are normalized (Sm = 1), completeness implies for the modal

expansion coef�cients in Eq. (2.25)

X�

l

jal j
2 =

X�

l

j bl j
2 = 1. (2.48)

The quantity jal j
2 and jbl j

2, respectively, represents the fraction of intensity carried

by the l th mode F�
� l

into the for- or backward direction.

� The complex modal expansion coef�cients are simply given by the projection of the
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solution on the orthonormal basis using the inner product

al = C (F, F+
� l

), bl = C (F, F�
� l

). (2.49)

These powerful conclusions have made the modal expansion a method of choice for many

electromagnetic problems, especially in the waveguide community[185, 186] . Its appli-

cability to the BLOCH modes of lossless photonic crystals and -waveguides has also been

shown [187] . Equipped with this mathematical framework, one can solve a large number

of photonic problems by »modally decomposing« them. Where different systems interact,

coupled mode equations are derived from the conjugated energy balance (2.43) [177,

182, 185] and everything is broken down to z-dependent expansion coef�cients which

are projections of the modes onto each other,i. e. »overlap« integrals which have an in-

tuitive physical interpretation of an energy redistribution among the modes according to

their spatial overlap.

The modal expansion method using conjugated reciprocity has become so common in

optics that the prerequisites for its applicability have almost been forgotten: It just holds

for losslesssystems! Any non-zero imaginary part of " (! ), may it be loss or gain, will

render it invalid. While small losses have successfully been treated as a perturbation

[185] , the strong metal loss at optical frequencies in plasmonics asks for an entirely rene-

wed mathematical framework. The problem appeared �rst in the analysis of open laser

resonators back in the 1970s[8, 188, 189] . Since the HELMHOLTZoperator looses its self-

adjoint property, non of the conclusions given above is true any more. Modes are simply

not orthogonal in the sense of C (F� m
, F� n

). Authors like SIEGMAN argue enthusiastically

that this issue is much too less re�ected in the community and even renders the whole

concept of »photons« questionable[10] . The nature of classical electromagnetism, as it

presents itself to us today, is, however, so mathematically »well-behaved«[190] that an

escape route exists, although it is much less paved and convenient.

Starting once again with two solutions to M AXWELL's equations with a slightly different

ansatz, we can obtain the relation

r � (E1 � H2 � E2 � H1) =
i
c
(! 1 � ! 2) �

�

H1 � H2 � " (! )

v
t � 0

� 0

E1 � E2

�

. (2.50)

For two solutions at the same frequency! , the RHS isalways zero. If we apply again
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Eq. (2.44), this yields

@
@z

�

?
(E1 � H2 � E2 � H1) � ez dS

| {z }
de f
= U (F1,F2)

= 0, (2.51)

and if we again insert two modal solutions of a waveguide problem

(� m + � n)

�

?

�
E� m

� H� n
� E� n

� H� m

�
� ez dS = 0, (2.52)

which is called the unconjugatedformulation of L ORENTZreciprocity [172, 185] using the

inner product U (F� m
, F� n

).

This relation seems entirely useless at the �rst glance. It implies that modes are ortho-

gonal on themselves and all other modes propagating in the same direction. This spoils

all intuitive properties of the conjugated modal framework listed above.

However, an interesting case is obviously given, when� n = � � m. Let us denote byĤ!

the HELMHOLTZoperator in Eq. (2.28) which is parameterized by a real ! . Let us further

assume we have found a particular solution to the eigenvalue problem

Ĥ! F� = � 2 � F� , (2.53)

with a non-degenerate eigenvalue� 2. We have thus automatically found two solutions

for our modal ansatz in the propagation directions � z, which belong to the same non-

degenerateeigenvalue! Physically, we of course interpret them as forward or backward

propagating modes. Since they belong to the same eigenvalue, do their electromagnetic

�elds have to be exactly equal? The answer is no. For a scalar eigenvalue problem like

SCHRÖDINGER's equation in quantum mechanics any multiplication of the eigenfunction

with a complex constant yields the same eigenvalue and belongs to thesamevector in

HILBERT space. This is also true here, but the possibilities for symmetry operations on

the vectorial electromagnetic �eld are richer than in the scalar case and link for- and

backward propagating �elds. Mathematically, one can de�ne the »adjoint« to the problem

in Eq. (2.53) in dual space [7] , which formally reads as

Ĥ†
! F†

� =
�
� †

� 2
� F†

� . (2.54)
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The adjoint operator is de�ned as the operator ful�lling the relation [191]

U
€
Ĥ! F� , F†

�

Š
= U

€
F� , Ĥ†

! F†
�

Š
. (2.55)

As stated before,Ĥ! 6= Ĥ†
! is not self-adjoint when " 00(! ) 6= 0. The physical interpretation

is that the adjoint modes are given by the backward modes of the system,i. e. � † =

� � . By linking them together, forward exponential decay is compensated by backward

exponential decay, which means forward exponential increase. We can than proceed to

derive an orthogonality relation from Eq. ( 2.52) as

�

?

€
E� m

� H†
� n

� E†
� n

� H� m

Š
� ez dS

| {z }
de f
= A (F� m ,F� n)

= 4Fm � � mn, (2.56)

This is the adjoint formulation [32, 192] . While Sm is the POYNTING �ux of mode m,

Fm is its generalization, the »adjoint �ux« [192–194] , which is not related to energy

considerations. While energy is not preserved throughout propagation, adjoint �ux is.

Eq. (2.56) is called a biorthogonality relation in functional analysis. The completeness

of the mode set f Fm, F†
mg can mathematically be shown[7, 195–198] , so that we can res-

cue many of the appealing consequences of the conjugated lossless formalism. The main

difference is that the subspace of modes propagating in only one direction is incomplete

without considering their adjoints, i. e. modes in the opposite direction. In many ca-

ses, these modes do not need to be calculated separately, but can be found by symmetry

relations. Note that only transverse �eld components enter the inner products. For z-

invariant structures and BLOCH modes with a unit cell which is mirror symmetric in z,

they are found by the transformation properties of the electromagnetic �eld as a vector

or pseudovector, respectively[174] . This yields

f E†
? ( x, y, z, ! ), H†

? ( x, y, z, ! )g= f� E? ( x, y, � z, ! ), H? ( x, y, � z, ! )g (2.57)

or

f E†
? ( x, y, z, ! ), H†

? ( x, y, z, ! )g= f E�
? ( x, y, z, � ! ), � H�

? ( x, y, z, � ! )g

= f E? ( x, y, z, ! ), � H? ( x, y, z, ! )g. (2.58)

The latter possibility is motivated by the fact that the electromagnetic �elds in frequency

domain are the FOURIER transform of real physical �elds in the spatio-temporal domain
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and must thus obey

F(� ! ) = F� (! ). (2.59)

Some authors prefer the �rst convention [192] , while others use the second[32, 172,

185, 193, 194] . They are equivalent and correspond to the two physical possibilities of

mode reversal by mirroring or phase-conjugation. In the case of a lossless system, all

three formulations of reciprocity become equivalent

A
€
F� m

, F�
� n

Š
= U

�
F� m

,
€
F�

� n

Š†�
= C

�
F� m

, F� n

�
. (2.60)

In the following parts of the thesis, we will increase readability by introducing D IRAC's

notation of the inner product. In order to keep the reader constantly reminded that ad-

joint modes have to be used and prevent unclarities, we use the conjugate formulation

(where a mode has to be speci�cally »marked« as being adjoint). However, instead of

the formal † symbol, we use+ and � for for- and backward propagating modes to rees-

tablish a physical intuition. Let thus be
�
� +

l

�
= ( E+

? ,� l
, H+

? ,� l
) a ket vector in HILBERT

space with the concatenated transverse �eld components of the forward modeF+
� l

, h �
l j

its associated bra and


 �

m

�
�  +

n

�
= U (F�

� m
, F+

� n
) the inner product in this space. Then, the

biorthogonality relation reads as



 �

m

�
�  �

n

�
= 0,



 �

m

�
�  �

n

�
= � Am � � mn. (2.61)

Decomposition of a general �eld solution jFi reads as

jFi =
X�

l

al �
�
�  +

l

�
+

X�

l

bl �
�
�  �

l

�
, (2.62)

where the expansion coef�cients are given by the projections

al =


 �

l

�
� F

�
, bl = �



 +

l

�
� F

�
, (2.63)

if the modes are normalized according toAm = 1. Equipped with this framework, we are

ready to apply the adjoint modal formalism to nanooptical problems.
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2.2. Numerical Computations: Aperiodic Fourier Modal

Method

There are few cases, where the basis functions and the decomposition can be calculated

analytically. Examples are MIE-theory [121] and to some extent the multipole expansion

technique [148, 199, 200] . For the vast number of problems, modes and inner products

have to be calculated numerically. Common strategies for this purpose are �nite-elements

or �nite-difference mode solvers and especially for periodic media the use of a FOURIER

series expansion techniques. We will use the latter. An advantage of this approach is

that the plane wave basis used for a FOURIERexpansion is guaranteed to be a complete,

orthonormal set. One can think of the method as using an auxiliary basis to express the

original eigenfunctions.

If we denote by j' mi a vector containing the transverse electromagnetic �eld com-

ponents of plane-wave basis functionFkm
� exp(ik x,mx + ik y,m y) and by j' mi h' mj the

projection operator onto itself, we �nd from Eq. ( 2.62)

X�

m

h' m j Fi � j ' mi =
X�

m

X�

l

al �


' m

�
�  +

l

�
� j ' mi +

X�

m

X�

l

bl �


' m

�
�  �

l

�
� j ' mi (2.64)

The LHS is of course just the FOURIERrepresentation of jFi in a more formal framework.

A FOURIERmode solver now has the purpose to calculate the


' m

�
�  �

l

�
.

This Fourier Modal Methodhas its origins in the rigorous calculation of diffraction from

layered gratings [173, 201–204] . It generally treats the problem shown in Fig. 2.1 by

the following strategy: The three-dimensional space is divided into S regions or »slices«,

denoted by superscript (s) = 0 . . . S, where " (s)( x, y, ! ) is z-invariant in each slice. One

�nds the


' m

�
�
�  � ,(s)

l

�
within each slice with a FOURIERmode solver algorithm, which is

just the FOURIERrepresentation of the HELMHOLTZ problem and reads as

X�

m

h' mjĤ (s)
! j (s)

l i � j ' mi =
�
� (s)

l

� 2
�
X�

m

h' mj (s)
l i � j ' mi . (2.65)

This is an algebraic eigenvalue equation for the FOURIER coef�cients h' mj (s)
l i of the

mode l in slice s. The FOURIER representation of the HELMHOLTZ operator h' mj Ĥ (s)
! is

a TOEPLITZmatrix with the F OURIERcoef�cients of each slices' permittivity distribution

" (s)( x, y, ! ). Ef�cient implementations to solve algebraic eigenvalue equations are at

hand [205] .
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slice index
0 1 2 ... S

z

S-matrix of stacked
structure or unit cell

(Bloch modes)

Fourier component
of adjoint eigenmode

set of slice (s)

Fourier component
of forward diffracted field

Fourier component
of incident field

Fourier component
of backward diffracted field

PML

PML

slice index
0 1 2 ... S

z
...

...

S-matrix of stacked
structure or unit cell

(Bloch modes)

Figure 2.1. (left) Basic scheme of the Fourier Modal Method. All relevant modes are expressed in a trans-
verse FOURIERbasis, i. e. projected with h' mj. The diffraction problem is solved by successively iterating
the modal amplitudes in every slice(s) by the S̃-matrix algorithm. (right) Aperiodic extension of the Fourier
Modal Method to treat e. g. waveguide problems. The basic scheme is unaltered, however, the transverse
period � can now be chosen arbitrarily. Perfectly Matched Layers (PMLs) ensure the electromagnetic iso-
lation of the computation cell.

The second step solves the diffraction problem and �nds thef a(s)
l , b(s)

l g from the S� 1

interface boundary conditions, i. e. the continuity of the tangential �eld components. At

the interface between slices� 1 and s, this reads

�
�F(s� 1)

�
=

�
� F(s)

�
)

X�

m



' m

�
� F(s� 1)

�
� j ' mi =

X�

m



' m

�
� F(s)

�
� j ' mi

)


' m

�
� F(s� 1)

�
=



' m

�
� F(s)

�
. (2.66)

This equation expresses just the well-known continuity of the tangential �eld components

in FOURIERspace. If we insert the modal decomposition Eq. (2.62), we get

X�

l

a(s� 1)
l �



' m

�
�
�  + ,(s� 1)

l

�
+

X�

l

b(s� 1)
l �



' m

�
�
�  � ,(s� 1)

l

�
=

X�

l

a(s)
l �



' m

�
�
�  + ,(s)

l

�
+

X�

l

b(s)
l �



' m

�
�
�  � ,(s)

l

�
. (2.67)
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We also have to consider the initial conditions, i. e. the known incoming wave amplitudes

f a(0)
l , b(S)

l g. The propagation of each mode through thez-invariant slice s with thickness

d(s) is analytically known

j + ,(s)
l (z + d(s))i = ei � l d

(s)
�j  + ,(s)

l (z)i , and j � ,(s)
l (z � d(s))i = e� i � l d

(s)
�j  + ,(s)

l (z)i .

(2.68)

One can rewrite these equations in a block matrix form

–
a(s)

b(s)

™

=

–
T̃(s)

11 T̃(s)
12

T̃(s)
21 T̃(s)

22

™ –
a(s� 1)

b(s� 1)

™

, (2.69)

with a modal block transfer matrix T̃(s). The whole layered stack is solved iteratively as

–
a(S)

b(S)

™

= T̃(S) � T̃(S� 1) � � � � � T̃(2) � T̃(1) �

–
a(0)

b(0)

™

= T̃ �

–
a(0)

b(0)

™

. (2.70)

With the knowledge of the incoming modal amplitudes f a(0), b(S)g, the diffraction pro-

blem is thus fully solved. The »classical« FMM[173, 201, 203] treats gratings which

have homogeneous half-spaces adjacent to the grating structure, so that thej + ,(s)
l i are

identical to the j' mi in the �rst and last stack. The method itself is, however, in no way

limited to this case and can successfully be applied to cases where the adjacent media are

photonic crystals or metamaterials [32] .

The equations above are given in a manner where convergence, uniqueness and ex-

actness of the solution are algebraically ensured by the functional theoretical arguments

stated earlier [7] , especially the completeness of the mode set under adjoint biorthogona-

lity [195, 196] . This is re�ected by the
P�

signs, which cover the complete HILBERTspace

for discrete (bound) and continuous (radiating, leaky) modes. To �nd an approximative

solution on a computer, all quantities need to be discretized and truncated. The FMM as

a numerical routine requires periodicity in the transverse (x, y) directions with periods

� x and � y. The functions can then be represented by a FOURIERseriesexpansion instead

of a FOURIER transform. In this way, the otherwise continuous generic parameter m be-

comes countable and the transverse wavevector components reduce tokx,m = m � 2�= � x

and ky,m = m� 2�= � y. In the algorithm, m is truncated to a number where a certain level

of convergence is reached.
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The speci�c implementation of an FMM algorithm can have a number of numerical

pitfalls, which need to be considered. It took several years in the 1990s until the problems

were properly analyzed and overcome. Even in recent years, LI discovered some rare

geometries, where �eld singularities prevent the numerical FOURIER series expansion

from converging at all [ 206] . Nevertheless, after several drastic improvements, the FMM

has become a stable and reliable work horse in the rigorous computation of periodic

media.

The method has two principal ingredients: a FOURIEReigenmode solver plus a recur-

sive solver for the boundary conditions. The �rst problems occur in the eigenmode solver.

The eigenvalue problem needs to be formulated in a way, which is adequate when nume-

rical convergence is considered[203] , otherwise it converges slow in TM polarization.

The same is true for the FOURIER factorization of " (s)( x, y, ! ) [ 207] .

A second problem considers the matching of boundary conditions. Since thẽT matrix

contains exponentially growing factors which potentially cause over�ow, the recursion

is not unconditionally stable. This problem was overcome by the use of scattering orS̃

matrices instead, which are de�ned by

–
a(s)

b(s� 1)

™

=

–
S̃(s)

11 S̃(s)
12

S̃(s)
21 S̃(s)

22

™ –
a(s� 1)

b(s)

™

. (2.71)

They link »input« �elds to »output« �elds, contain no exponentially growing factors and

their recursion is therefore unconditionally stable. The S̃ matrices of different layers can,

however, not be multiplied in the classical sense to obtain the systemS̃ matrix, but need

to undergo the »star product«S̃ = S̃(S) � S̃(S� 1) � � � � ? S̃(2) � S̃(1). The whole algorithm and

its relation to the T̃ matrix, as well as the de�nition of the star product is given in [208] .

The approach can also be used to calculate the band structure and BLOCH modes of

systems which possess a periodicity inz-direction with period p. The stack of FMM slices

represents the unit cell in that case. The pseudo-periodic BLOCH boundary conditions

then yield a generalized eigenproblem for the expansion coef�cients of the BLOCH modes

in each slice[169, 209, 210] . In a numerically favorable form, it reads

–
1 � S̃(s)

12

0 S̃(s)
22

™

�

–
a(s)

b(s)

™

=
1

1 + ei � b(! )p

–
1 + S̃(s)

11 � S̃(s)
12

S̃(s)
21 � 1 � S̃(s)

22

™

�

–
a(s)

b(s)

™

, (2.72)

and yields the BLOCHwavevectors� b(! ) as well as the expansion coef�cientsf a(s), b(s)gof
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the BLOCH function in every slice. Thus, the full BLOCHmode is known. We will see in the

following parts of this thesis, however, that only the BLOCH mode pro�le at the entrance

facet of the unit cell is important for mode coupling, provided that the cut-plane has been

chosen in a way that preserves the intrinsic symmetry of the system.

Aperiodic extension of the FMM. The use of FOURIER series appears as a logical step

in the numerical analysis of periodic media. LALANNE and co-workers showed, however,

that the method can as well be advantageously applied toaperiodicsystems like wavegui-

des, which lack transverse periodicity[167, 168, 170] . The FOURIERseries expansion is

performed by introducing a virtual transverse periodicity. Instead of an isolated waveg-

uide, one calculates a periodic array of identical waveguides. Such a calculation would

not be correct for the single waveguide case due to the electromagnetic interaction be-

tween the computational cells under BLOCH periodic boundary conditions. The second

ingredient of the method are thus arti�cial absorbers, which isolate adjacent cells from

each other, so-calledPerfectly Matched Layers(PMLs) [211, 212] . They have to ful�ll two

tasks: absorbing outgoing radiation so that it cannot interact with neighboring cells while

also not re�ecting such radiation back into the original cell, which would disturb the �eld

solution there. It has been shown that the interface between an anisotropic and magnetic

arti�cial medium ( � (2), "̂ (2)) and a non-magnetic isotropic medium with permittivity " (1)

can be re�ection-less under all angles of incidents in our coordinate de�nition, when the

following conditions hold [168, 211]

" (1) =
" (2)

zz

� (2)
, " (2)

x x � " (2)
zz =

�
" (1)

� 2
. (2.73)

By introducing a positive imaginary part, the »PML medium« becomes lossy and so ful-

�lls both requirements. The introduction of PMLs can be seen as introducing a coordinate

transform region which maps the in�nite transverse space onto the �nite computational

interval [171] , and preserves the orthonormal properties of modes. Their numerical re-

presentation, especially in the case of leaky and radiating modes, are therefore called

Quasi-Normal Bloch Modes[172] .

With the aperiodic Fourier Modal Method (a-FMM), we have thus found the compu-

tational method of choice for using the modal formalism from above. It ensures the

correctness of the overlap integrals although the computational domain has only a �nite

size. The calculated �eld pro�les of bound modes are unaffected by the PMLs as long as
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II Theoretical and computational concepts

a proper choice of the cell size and PML thickness was made, since their �eld is localized

in close vicinity of the waveguiding structure.

The implementation of the method requires a formulation of the FMM which accounts

for anisotropic media. The necessary modi�cations to the scheme above are minor and

just need to allow for a tensorial permittivity "̃ (! ), as well as a non-zero permeability

� (! ). Since the principal scheme and arguments outlined above stay unaltered, we do

not repeat the explicit anisotropic formulation of the FMM here, but refer to the literature

[167, 168, 213] .

We have implemented the method outlined above in order to calculate the necessary

modal quantities throughout this thesis rigorously, with a particular focus on:

� the dispersion relation � (! ) and �eld pro�les F� (r, ! ) of waveguide modes, espe-

cially bound ones (Chaps.III , IV & V).

� the band diagram � b(! ) and BLOCHmode pro�les B� b
(r, ! ) of periodic systems like

waveguide gratings (Chap. IV) and waveguides hybridized with periodic arrays of

nanoparticles (Chap.V).

� the modal expansion coef�cients f al , bl g, especially the modally resolved scattering

parameters re�ection and transmission at the interfaces between different structu-

res (Chaps.III & IV).

The classi�cation into boundor leaky/ radiative modes needs more care when loss and

metals are present, since� (! ) will always be a mixed complex (neither purely real nor

purely imaginary) quantity. Therefore, we additionally evaluate the transverse POYNTING

vector of the �eld solutions close to the PML regions in our code to determine whether a

mode radiates energy towards either of the substrate or cladding directions.
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III. Generalization of the impedance using

the adjoint eigenmode framework

The impedance is of utmost importance for the design of electronic circuits. However, it

is not clear how a rigorous generalization for nanooptical structures is possible. In this

Chapter, we derive such a generalization based on the adjoint modal framework. From

the general expression, we show that modal symmetry properties lead to the classical

formulas for genuinely homogeneous materials and waveguides in the radio frequency

range, such as a coaxial wire. We will also discuss the role of the »BLOCH impedance«

for metamaterials and the possibilities to �nd the impedance of (plasmonic) waveguides

and other sophisticated structures.

3.1. Generalized impedance de�nition from the adjoint mode

framework

One can derive from the MAXWELLcurl equation in vacuum

r � Ē(r, t ) = �
@̄B(r, t )

@t
(3.1)

that, after a FOURIER transform over space and time1,

k � Ẽ(k, ! ) = ! � B̃(k, ! ). (3.2)

We will decorate functions in the spatio-temporal FOURIER domain with a tilde sign on

top. SinceB̃(k, ! ) = � 0 � H̃(k, ! ) and k = u � != c for plane waves in vacuum with u = k=k

1The derivative operators behave under FOURIER transform as @
@t ! � i ! and r ! ik.
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and c being the speed of light in vacuum, we have

u � Ẽ(k, ! ) = c� 0 � H̃(k, ! ). (3.3)

If we use the fact that c = [ " 0� 0] � 1=2, we arrive at the result that

u � Ẽ(k, ! ) = Z0 � H̃(k, ! ), (3.4)

with Z0 = c� 0 = [ � 0="0] 1=2 � 376.73 
 , which is typically termed »the« impedance of

free space2. This important result states the orthogonal nature of every spatio-temporal

FOURIERcomponent of the electric and magnetic �eld. The fact that their ratio is a real-

valued constant means that both �elds are in phase.

In a genuinely homogeneous and non-magnetic medium, the speed of light is smaller

by a factor of n = ( " ) � 1=2. The quantity n is called the refractive indexof the medium. It is

often regarded as a material constant, although it actually describes the propagation of

a wave. One usually de�nes the »intrinsic impedance« of the medium asZ = Z0=n in this

case. We will come back to this point later, when we introduce the adjoint eigenmode

analysis.

It is instructive to write Eq. ( 3.4) component-wise, using the antisymmetric LEVI-CIVITA

tensor �̃ [ 214] . This yields

Z0 =
1

H̃l (k, ! )

X

m,n

� lmnumẼn(k, ! ) (3.5)

and expresses magnitude, phase andhandednessof the relation between the electric and

magnetic �eld components of a plane wave going into an arbitrary unit direction u. If we

consider for instance a plane wave going inz direction, we have

u = [ 0, 0, 1] = ) Z0 = +
Ẽx(k, ! )

H̃y(k, ! )
= �

Ẽy(k, ! )

H̃x(k, ! )
. (3.6)

The signs express the right-handedness of the wave in vacuum or ordinary matter, a

property which can be altered in certain left-handed photonic »meta«materials[20, 215] .

2Since � 0 and c have de�nite and �xed values in the SI system of units, so has Z0.
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However, it is also possible to think just of the magnitudes of the �elds for which we �nd

X

l

H̃l (k, ! ) � H̃ �
l (k, ! ) =

�
�H̃(k, ! )

�
�2

=
1

Z2
0

X

l ,m,n,p,q

� lmn� l pq| {z }
� mp� nq� � mq� np

umupẼn(k, ! ) � Ẽ�
q(k, ! )

=
1

Z2
0

� X

m

u2
m �

X

n

Ẽn(k, ! ) � Ẽ�
n(k, ! ) �

X

m

umẼm(k, ! ) �
X

n

unẼ�
n(k, ! )

�

. (3.7)

Since the last term vanishes due to MAXWELL's divergence theorem3 and
P

m u2
m = 1 due

to normalization, we �nd

Z0 =

�
�Ẽ(k, ! )

�
�

�
�H̃(k, ! )

�
� . (3.8)

It is important to remember that the interchangeable possibilities to de�ne Z0 resulted

from the very speci�c properties of the eigenmodes of free-space, namelyhomogenity,

transversalityand right-handedness. Another important fact is that the system is loss-free.

It is neither trivial nor guaranteed that the simple interpretation of the impedance will

still hold when we give up any of those properties.

Phenomenological introduction of the impedance using the adjoint modal framework.

We want to �nd a more general impedance de�nition for nanooptical structures now. The

starting point of our derivation should be the expectation, what an impedance should

actually describe. We have already seen that the usual �eld-ratio-based understanding

just makes sense for plane waves or other waves with speci�c symmetry and makes it

unpractical for e. g. a waveguide.

An experimentally and practically relevant impedance de�nition must correctly des-

cribe the behavior of a structure in the same way it does for electronics. We must thus

not only consider intrinsic, but also extrinsic parameters of a photonic structure, namely

how it couples to its surrounding.

It has been pointed out by HECHTand co-workers[51, 85] that such a de�nition would

correctly reproduce the re�ection that occurs at the interface between two different struc-

3Maxwell's equation r � D̄(r, t ) = 0 in (source-) free space implies
P

m umẼm(k, ! ) = 0 for any medium
which is homogeneous and isotropic.
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z

reference
structure

interface

y

x
Figure 3.1. Basic scheme of this Chapter. A for-
ward mode of a reference structure j� + i is impin-
ging at an interface to a structure under conside-
ration with a forward mode j + i at z = z0. The
sketch shows the structures analyzed in ChapterV
(reference = dielectric slab waveguide, analyzed
structure = metasurface covered waveguide). Ho-
wever, this basic scheme is independent of the spe-
ci�c structures for the considerations of this Chap-
ter. The discontinuity leads to a coupling into the
backward mode j� � i , characterized by the modal
re�ection coef�cient r . On this coef�cient, we wish
to build a rigorous impedance de�nition.

tures with the well-known formula

r =
Z � Zref

Z + Zref

(3.9)

for the complex re�ection coef�cient r . Here and in what follows, we will understand Z

as the impedance of the structure we want to analyze andZref as the impedance of a re-

ference system, from which we wish to couple light to the structure under consideration.

This can for instance be free-space, if we illuminate our structure with a plane wave, a

waveguide from which we couple light to our structure, a nanoantenna we use for light

localization, or also any other photonic structure which is used for excitation. A basic

sketch of the problem we want to analyze is shown in Fig.3.1.

In order to �nd a reasonable de�nition, we will now invert the problem and ask, which

impedance de�nition would ful�ll Eq. ( 3.9)? Obviously, we have to consider impedances

for which the relation

Z = Zref �
1 + r
1 � r

(3.10a)

holds. We encounter a point here which is as trivial as important, namely that the re-

�ection from an interface of impedance discontinuity does solely depend on the ratio of

the impedances but not their absolute values. This gives us a certain freedom – and also

requires us – to choose a proper reference frame which we compare any impedance value

against. In literature, even though the reference frame is rarely explicitly mentioned, it

is usually the impedance of a plane wave in free-spaceZ0, as it was introduced above.

We will consequently concentrate our efforts on �nding the relative impedance of the
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III Generalization of the impedance using the adjoint eigenmode framework

two structures under consideration

Z
Zref

=
1 + r
1 � r

. (3.10b)

The problem is now conceptually shifted to �nding a rigorous expression for the complex

re�ection coef�cient at the interface between two (arbitrary) structures. This very general

task requires very general means and we will show that the adjoint modal framework will

provide the necessary answers.

We must �rst understand, what we mean by a »re�ection coef�cient«. Intuitively, one

may think of the total energy that is scattered from the interface into the backward di-

rection. However, since r is complex, we rather want to describe thestrengthand phase

of the �eld that is moving in backward direction. This �eld is composed of modal compo-

nents that are the generic eigenmodes of the reference structure. Every backward eigen-

mode has its own strength and phase encoded in a complex expansion coef�cientbl in

Eq. (2.25). Thus, we need to relate r to the multitude of backward expansion coef�cients

bl .

We introduce the adjoint modal framework from Chap. II to describe the MAXWELL

boundary conditions at the interface between the two structures. Unfortunately, we need

some space for numeration of the modes and the declaration as forward or backward.

By the Greek letter � , we will now understand modes of the referencestructure whe-

reas refers to the structure under consideration. The continuity of the tangential �eld

components thus reads

j� + i + j� � i = j	 + i . (3.11)

The total �eld in the reference structure j� i = j� + i + j� � i is composed of the forward pro-

pagating incident �eld j� + i and the backward propagating re�ected �eld j� � i , whereas

the transmitted �eld in the structure of interest j	 + i is purely forward propagating 4.

We will now perform the modal decomposition of all �elds. We denote the forward

propagating eigenmodes of the reference structure as
�
� � +

n

�
and write

j� + i =
X

n

cn

�
� � +

n

�
(3.12)

with complex expansion coef�cients cn. If we follow the same strategy for modal expan-

4We do not want to consider the case where �elds are coherently incident from both sides here.
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sion for all other �elds, we can rewrite Eq. ( 3.11) as

X

n

cn

�
� � +

n

�
+

X

n

rn

�
� � �

n

�
=

X

n

t n

�
�  +

n

�
. (3.13)

The modal expansion coef�cients now must be interpreted in a way that rn denotes the

complex excitation coef�cient for re�ection into the nth backward mode of the reference

structure and t n describes the transmission into thenth forward mode of the structure

under consideration.

The next step in order to solve Eq. (3.13) for the re�ection coef�cients is to make use

of the biorthogonality relations Eqs. (2.61). By applying a projecting of the equation onto

modes


 +

m

�
� we arrive at

X

n

cn



 +

m

�
� � +

n

�
+

X

n

rn



 +

m

�
� � �

n

�
=

X

n

t n



 +

m

�
�  +

n

�
. (3.14)

The RHS of the equation vanishes due to the biorthogonality relations (2.61). Introducing

an algebraic notation yields

2

6
4



 +

1

�
� � �

1

� 

 +

1

�
� � �

2

�
� � �



 +

2

�
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1

� 

 +

2

�
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2

�
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...
...

. . .

3

7
5

2

6
4

r1

r2
...

3

7
5 = �

2

6
4



 +

1

�
� � +

1

� 

 +

1

�
� � +

2

�
� � �



 +

2

�
� � +

1

� 

 +

2

�
� � +

2

�
� � �

...
...

. . .

3

7
5

2

6
4

c1

c2
...

3

7
5 (3.15a)

or in a short matrix notation

P̃ � r = � Q̃ � c, (3.15b)

with

Pmn =


 +

m

�
� � �

n

�
, rm = [ r1, r2, . . .] T ,

Qmn =


 +

m

�
� � +

n

�
, cm = [ c1, c2, . . .] T .

(3.15c)

By multiplying from the left with the inverse 5 of P̃ we get a preliminary result

r = � P̃� 1 � Q̃ � c (3.16a)

5 The existence of the inverse is ensured by the biorthogonality relations (non-zero overlap integrals of
for- and backward modes). Even if both structures were identical, P would be diagonal, i. e. of full
rank.
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or in components

rm = �
X

l ,n

P� 1
ml Qlncn. (3.16b)

To check for consistency, we imagine both structures to be identical. The biorthogonality

relations (2.61) imply that Q̃ is a null matrix in this case whereasP̃ = 1 becomes the unit

matrix. Consequently, r vanishes for every modal excitation spectrumc. As expected, no

re�ection occurs at the interface in that case, regardless of the speci�c illumination.

It is interesting to examine Eq. (3.16) a little closer with respect to our initial ques-

tion. The formula for the modal re�ection coef�cients consists of two parts. The �rst

part is the product � P̃� 1Q̃, which consists only of mutual overlap integrals between the

eigenmodes of the two structures and describes how thecoupling between the different

modes happens. It is a property which is inherent to the interface and just depends on

the structures themselves. The second part is the modal spectrum of the illumination,

which is simply multiplied algebraically and »selects« a speci�c physical situation out of

the general term. If we wanted to build our impedance generalization on rm, we would

arrive at a situation where the impedance becomes dependent on the illumination, which

is of course highly unwanted.

Instead, we can overcome this drawback by just making use of the �rst part. We de�ne

an intermodal re�ection matrix

r̃ = � P̃ � Q̃, (3.17a)

or in components

rmn = �
X

l

P� 1
ml Qln, (3.17b)

which describes now the re�ection into the mth backward mode due to illumination by

the nth forward mode and depends solely on the modal spectra of the two structures.

We are now in a position to link the intermodal re�ectance to the impedance. Using

Eq. (3.10b), we introduce the relative intermodal impedance

Zmn =
1 �

P
l P� 1

ml Qln

1 +
P

l P� 1
ml Qln

. (3.18)
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This is a �rst important result of this Chapter. It is possible to use the rigorous result for

intermodal re�ection for de�ning an intermodal impedance.

Equation (3.18) has to be discussed thoroughly. It de�nes a relative impedance value

for two eigenmodes. The quantity Zmn describes the coupling between a forward mode
�
� +

m

�
in the structure of interest and the biorthogonal pair of modes

�
� � �

n

�
in the reference

structure. In order to do so, however, Zmn needs not only information from those three

modes but also fromall backward modes of the reference structure andall forward modes

of the structure of interest. This is expressed by the summation over the running indexl .

The total modal re�ection coef�cient, which takes into account also the excitation, reads

as

rm =
X

n

cn �
Zmn � 1

Zmn + 1
. (3.19)

We arrive at an important conclusion: It is not possible to de�ne a rigorous relative

impedance between any two modes independently of all other modes!

This statement seems highly contradictory to the beginning of the Chapter, where we

have introduced the free-space impedance in a way we deem to be impossible now. Ho-

wever, this confusion can be resolved by introducing a special case of utmost importance,

which is shown later to be either exactly valid (for homogeneous media, RF regime)

or at least a reasonable approximation (for photonic crystals, metamaterials, plasmonic

waveguides). This leads to rigorous results in a practically relevant fashion.

Fundamental Mode Approximation. If only onemode of each kind (for- and backward)

would be involved in the interaction, the simpli�cation would be enormous 6. What seems

to be an extremely crude approximation at �rst glance is in fact often realized in practical

situations or at least a practical goal, as we will see later.

The essence of the Fundamental Mode Approximation (FMA) can be summarized in

the following assumptions:

6 »Fundamental Blochmode« does not necessarily mean the mode with the lowest loss but rather the
»largest overlap« with the excitation. It should be seen more as a requirement on the �eld of the mode
and its symmetries rather than on the loss of the mode. Strictly speaking, the term »fundamental« has
nothing to do with neff in this context although one will in practical situations prefer a mode with low
loss.
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� The excitation happens via a single mode,i. e.

jcnj =

8
<

:

1 for n = 1

0 for n � 1
(3.20)

� The overlap integrals


 +

n

�
� � �

1

�
vanish approximately, except for the casen = 1.

This ensures that only one re�ection and transmission coef�cient is non-zero and

means that the reference structure excites only one forward mode in the structure

of interest and one backward mode in the reference structure.

The validity of the FMA has been shown to be a necessary prerequisite when it comes

to the delicate task of assigning effective parameters to metamaterials[32–34] . Only in

this case, one can treat the effective indexneff of the fundamental BLOCH mode as »the«

index of refraction of the medium. It is thus not surprising that the same mathematical

necessity appears again when it comes to impedances.

The quantity P̃� 1 becomes diagonal in this case, and we �nd for the fundamental mode

re�ection coef�cient

r11 = � P� 1
11 Q11 = �



 +

1

�
� � +

1

�



 +

1

�
� � �

1

� . (3.21)

This result can be readily inserted into Eq. (3.18), which yields

Z11
de f
= Ẑ =

1 � h +
1 j � +

1 i
h +

1 j � �
1 i

1 + h +
1 j � +

1 i
h +

1 j � �
1 i

=



 +

1

�
� � �

1

�
�



 +

1

�
� � +

1

�



 +

1

�
� � �

1

�
+



 +

1

�
� � +

1

� . (3.22)

We will now omit the subscripts for the fundamental mode and rewrite the expression

in terms of the electromagnetic �elds, using the de�nition of the inner product based on

adjoint reciprocity Eq. ( 2.56). A new subscript »ref« is introduced to mark �elds which

belong to the reference structure (i. e.
�
� � �

1

�
), whereas we leave the �elds belonging to

the structure of interest (
�
�  +

1

�
) without subscript. We arrive at the �nal formula for the

adjoint impedance ratio

Z
Zref

=

� �
E�

ref(r, ! ) � E+
ref(r, ! )

�
� H+ (r, ! ) � E+ (r, ! ) �

�
H�

ref(r, ! ) � H+
ref(r, ! )

�
� ez dS

� �
E�

ref(r, ! ) + E+
ref(r, ! )

�
� H+ (r, ! ) � E+ (r, ! ) �

�
H�

ref(r, ! ) + H+
ref(r, ! )

�
� ez dS

.

(3.23)
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This equation constitutes another main result of this Chapter. It states that an unambi-

guous rigorous expression for the impedance ratio can be found based on the eigenmodes

of the two coupled structures. Only electromagnetic components which are parallel to

the interface contribute to the result. The important requirement for the applicability of

the method is that the FMA holds. Otherwise, every mutual interaction of modes must

be described by a separate impedance, which involves the whole modal spectrum.

It is interesting to investigate Eq. (3.23) with respect to the question whether an abso-

lute impedance value can be assigned to a certain structure. Since the formula represents

an impedance ratio of two structures, it is obvious that this is the case when the RHS

of Eq. (3.23) can be written as a ratio of expressions where the nominator involves only

E+ (r, ! ) and H+ (r, ! ), whereas the denominator involves just E�
ref(r, ! ) and H�

ref(r, ! ).

We will investigate this further in the upcoming section 3.2.

3.2. Application of the adjoint impedance model to different

structures

We have derived a generalized impedance ratio de�nition in the last section that is based

on a modal treatment. The result given by Eq. (3.23) showed some unusual consequences

that seem to be in contradiction to the common belief and usage of the impedance con-

cept. In this section, we will prove that the derived formula does not contradict previous

results. We will successively increase the level of complexity and see how the general for-

mula can be specialized. This will give instructive insights how one and the same concept

can undergo a generalization and under which circumstances it can be used further with

con�dence. In this section, we will also skip the explicit dependence of the quantities on

! for readability.

Impedance of z-invariant modal solutions. It is instructive to evaluate M AXWELL's curl

equations for the important case of a continuous translational symmetry into one di-

rection. This propagation direction is denoted by z . All modal solutions will have the

form exp(i � z) times a mode �eld function which depends only on x and y. This yields
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the two relations

H(x, y) = � i �
1

Z0k0

�

2

6
4

@Ez( x,y)
@y � i � � Ey( x, y)

i � � Ex( x, y) � @Ez( x,y)
@x

@Ey ( x,y)

@x � @Ex ( x,y)
@y

3

7
5 , (3.24a)

E(x, y) = i �
Z0

k0" ( x, y)
�

2

6
4

@Hz( x,y)
@y � i � � Hy( x, y)

i � � Hx( x, y) � @Hz( x,y)
@y

@Hy ( x,y)

@x � @Hx ( x,y)
@y

3

7
5 , (3.24b)

where we made use of the free space impedance de�nition. We want to focus on the tan-

gential �eld components only, since the longitudinal component does not enter Eq. (3.23).

We immediately see that no constant ratio exists between any transverse electric and mag-

netic �eld component in the general case.

If we, however, include the additional requirement of transversality, i. e. the solutions

split into two systems where either Ez or Hz vanishes, we get

Ex( x, y)

Hy( x, y)
= �

Ey( x, y)

Hx( x, y)
=

Z0

neff

(TE), (3.25a)

Ex( x, y)

Hy( x, y)
= �

Ey( x, y)

Hx( x, y)
=

Z0 � neff

" ( x, y)
(TM). (3.25b)

This has interesting implications. For every transverse TE mode, the ratio of the tangen-

tial electromagnetic �eld components is solely determined by the mode's effective index.

In TM polarization, this is just the case when the geometryexpressed by" ( x, y) is also

homogeneous. This is a somehow tragic consequence for plasmonics, since SPPs are inhe-

rently TM solutions at an inhomogeneityof " ( x, y) as shown on page21. Otherwise, the

»impedance of a SPP« would simply be given by the termZ0 �
”

" 1�" 2
" 1+ " 2

—1=2

. and one could

engineer plasmonic circuits in the same way we do it with coaxial wires. However, this

is not so and we have to continue our effort.

We now want to combine these modal properties of z-invariant systems with our im-

pedance framework. The systems continuous translational symmetry allows to use the

relations Eqs.(2.57) to calculate the adjoint from the forward modes. This yields a sim-

pli�cation of the general formula Eq. ( 3.23) which reads

Z
Zref

=

� �
E+ ( x, y) � H+

ref( x, y)
�

� ez dS
� �

E+
ref( x, y) � H+ ( x, y)

�
� ez dS

. (3.26)
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If we insert our �ndings in Eqs. ( 3.25), this yields

Z
Zref

=
Z0 � nref

eff �
�

Hy( x, y) � H ref
y ( x, y) dS

Z0 � neff �
�

H ref
y ( x, y) � Hy( x, y) dS

=
nref

eff

neff

(TE), (3.27a)

Z
Zref

=
Z0 � neff �

�
1

" ( x,y) � Hy( x, y) � H ref
y ( x, y) dS

Z0 � nref
eff �

�
1

" ref( x,y) � H ref
y ( x, y) � Hy( x, y) dS

(TM), (3.27b)

and when homogeneity of " ( x, y) is present

Z
Zref

=
neff � " ref

nref
eff � "

(TM). (3.27c)

The equations show a remarkable consequence. In the derivation of the adjoint modal

impedance, we started with the requirement that the quantity should reproduce the cor-

rect re�ection behavior. We now see that the ratios in Eqs. (3.25), which are mere modal

properties, do already represent theabsoluteimpedance de�nition in our sense

Zabs = Z0 �
1

neff

(TE), Zabs = Z0 �
neff

"
(TM). (3.28)

The normalization with Z0 is just a question of common gauging with respect to vacuum

plane waves. The key to this successful derivation was that the ratio of the integrals in

Eqs. (3.27) is a constant. The integrals themselves do not even have to converge as is

the case for plane waves. The relations must be evaluated using L'HÔSPITAL's rule in that

case. It is interesting to note the interplay betweenmodal quantities like neff and material

properties like the permittivity " in the TM case.

Homogeneous media. If we apply the �ndings above to homogeneous media, we have

to investigate the interface between two half-spaces, each �lled with a material " and

" ref, respectively. The eigenmodes in each half-space are plane waves with the dispersion

relation Eq. (2.27). If we introduce the angle of incidence � and the refraction angle 
 ,

we �nd that neff is simply given by the projection of k on the z-axis divided by k0, i. e.

nref
eff = "

1=2

ref � cos� , neff = " 1=2 � cos
 . (3.29)

48



III Generalization of the impedance using the adjoint eigenmode framework

By inserting into Eqs. (3.28) we �nd

Zref = Z0

"
1=2
ref

� 1
cos�

Z = Z0

" 1=2 � 1
cos


(TE),
Zref = Z0

"
1=2
ref

� cos�

Z = Z0

" 1=2 � cos

(TM). (3.30)

It is interesting to note the interplay between the refractive index n= " 1=2 as a material

property and the effective index neff as a purely modal quantity. In both polarizations,

the factors Z0=n and Z0=nref, respectively, become the essential measure which appear

as an absolute impedance at �rst glance. However, the problem is that an additional

degree of freedom occurs in the form of the incidence and refraction angle, which must

be included in the impedance de�nition. In the literature, this is consequently called the

»tangential impedance«[186] . Only in the case of normal incidence, where this degree

of freedom is absent, the tangential impedance is compatible with an absolute impedance

de�nition. It is instructive, also for the discussion in the following sections, to recall that

the speci�c structure of the mode was the reason that we could resolve the entanglement

with the reference components in the general de�nition Eq. ( 3.23). The given example,

although extremely simple, already shows some of the dif�culties associated with de�ning

impedances. This is a �rst illustration that an impedance de�nition based on eigenmodes

is a good way to tackle the problem rigorously. The tangential impedances derived above

will obviously reproduce the classical FRESNELformulas with the help of Eq. ( 3.9)

r =
nref cos� � n cos


nref cos� + n cos

(TE), r =

nref cos
 � n cos�

nref cos
 + n cos�
(TM). (3.31)

Waveguides in the RF regime.We shall now show the successful application of the

framework to »lumped circuit« structures. The example will be a rectangular hollow-

core waveguide. It has a rectangular cross-section of widtha, height b and is �lled by a

non-magnetic dielectric material with a permittivity " or " ref for the reference waveguide,

respectively. The walls are assumed to be perfectly electric conducting, which is a very

good approximation for all metals in this frequency range. As a consequence one has

DIRICHLET boundary conditions for the �elds, which need to vanish at the side walls.

The electromagnetic eigenmodes consist of separable functions inx and y and split into

two sets of solutions. In the �rst set, the electric �eld is purely transverse and has no z-

component (TE), whereas this is the case for the magnetic �eld in the second case (TM)

[186] .

This property is the key for the applicability of the relations derived above. The modal
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III Generalization of the impedance using the adjoint eigenmode framework

�elds themselves are highly inhomogeneous and compactly bound in space, however, they

are still transversein the sense of Eq. (3.25) and " is homogeneous inside the waveguide!

This makes the very same formulas Eqs. (3.28) perfectly applicable. In this sense, the

lumped RF waveguide does not differ from homogeneous space from the point of view of

modal symmetry, except that neff doesnot play the role of a »refractive index« anymore.

It is given by [186]

neff =

�

" �
� 2

k2
0

�
•

m2

a2
+

n2

b2

˜ � 1=2

, (3.32)

where (m, n) are integers denoting the mode number. If we introduce the cut-off fre-

quency of the mode(m, n)

! c = c �
•

� 2

"
�
•

m2

a2
+

n2

b2

˜‹ 1=2

, (3.33)

we immediately get from Eqs. (3.28) the impedance of the waveguide

Zwg =
Z0

" 1=2
�

�

1 �
! 2

c

! 2

� � 1=2

(TE), Zwg =
Z0

" 1=2
�

�

1 �
! 2

c

! 2

� 1=2

(TM). (3.34)

These relations are well-known to the electrical engineer. It is interesting to note how the

prefactor Z0=" 1=2 again appears forboth polarization and is interpreted as the absolute im-

pedance of the waveguide core material. This makes lumped elements and homogeneous

space perfectly analogous systems, although the mode-dependent factors differ strongly.

In the case of homogeneous media, a continuous degree of freedom exists for the modes

in form of the tangential k-vector component while discrete mode indices(m, n) deter-

mine the eigensolutions in the RF waveguide case. The key property wasz-invariance

and transversality of the modal solutions as well as homogeneity of" ( x, y). We will now

drop these requirements and see how the impedance de�nition is in�uenced.

Photonic Crystals and Metamaterials – the Bloch Impedance. Let us now consider anot-

her important symmetry class, namely a periodicity of " ( x, y, z) in 1, 2 or 3 dimensions.

The structures where these properties typically play a major role are photonic crystals

and metamaterials, both being man-made structures intended to in�uence the �ow of

electromagnetic radiation at will.

While there exist applications for both of them also in the RF domain, we will explicitly
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III Generalization of the impedance using the adjoint eigenmode framework

target for optical frequencies in this section since the nearly perfect electric conducting

boundaries would bring no additional insight regarding the question of an impedance

framework.

From the previous discussion we have already seen that we need a proper reference

structure to de�ne an impedance. Since photonic crystals7 and metamaterials are typi-

cally intended to be used in free-space applications, plane waves as eigenmodes of free

space constitute the natural modal reference system. However, the eigenmodes of the

structure under consideration are BLOCH modes now and we shall see how this in�uen-

ces the discussion.

At �rst we have to analyze the implications of the symmetry properties. Translational

invariance was replaced by translational periodicity in the z-direction. There exists an

ambiguity to de�ne the unit cell, however, not all choices have the same symmetry. We

want to concentrate on the important class of structures possessing a mirror symmetry in

the z-direction, so that

" ( x, y, � z) = " ( x, y, z), and " ( x, y, z + p) = " ( x, y, z). (3.35)

In this case we can apply the symmetry relations Eqs. (2.57) for the relation between

eigenmodes and adjoint eigenmodes and make use of Eq. (3.26). The BLOCH modes are,

however, no z-invariant solutions but have a form ei � b(! )z �B� b
(r, ! ) which was introduced

in Eq. (2.42). The derivative of the z-dependent BLOCH function will now give an additio-

nal contribution to M AXWELL's curl equations and the impedance cannot be characterized

by neff and " alone as was the case forz-invariant systems.

We analyze the interface between a half-space of an homogeneous material with"

and a metamaterial/ photonic crystal with our adjoint modal impedance framework. The

plane waves as reference eigenmodes were treated above and their contribution can be

pulled out of the integral. What remains are the contributions of the B LOCH functions

which are inhomogeneous across the interface atz = z0

Z
Zref

=
"

1=2

ref

Z0

�

�
Eb,y( x, y, z0) dS

�
Hb,x( x, y, z0) dS

(TE), (3.36a)

Z
Zref

=
"

1=2

ref

Z0

�

�
Eb,x( x, y, z0) dS

�
Hb,y( x, y, z0) dS

(TM). (3.36b)

7Photonic Crystal Waveguides belong logically to the next paragraph within this context.
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Since the BLOCH functions are periodic with the lattice, the integration can be restricted

to the unit cell. If one divides by the area of the unit cell, the integrals gain the meaning

of a surface averaging of the �elds across the unit cell and we get

ZB =



Eb,y

�
z= z0


Hb,x

�
z= z0

(TE), ZB =



Eb,x

�
z= z0


Hb,y

�
z= z0

(TM). (3.37)

This result was found before without the use of an adjoint impedance framework [29,

32] and was called the »BLOCH impedance«. It was also shown that in case the FMA is

valid, the metamaterial or photonic crystal is homogeneizable andneff and Zb are the two

effective mode parameters that characterize the behavior of the system completely as if

it was truly homogeneous.

The critical question for the success is thus if the structure can be designed to ful�ll

the requirement for validity of the FMA. This is far from being trivial in practice since the

calculation of all modal overlaps is required for a de�nite answer. However, newer works

suggest a system of metasurfaces with dielectric spacer layers which prevent modal cou-

pling except for the fundamental BLOCH mode and work towards the design of systems,

where the FMA is inherently ful�lled [216] .

While metamaterials are more likely to reach this limit, photonic crystals usually show

larger dimensions for the period which renders an excitation of higher order BLOCH mo-

des more probable. An FMA-based scalar impedance is thus not of great practical use.

Consequently, LAWRENCEand co-workers [36–38, 217] worked with the impedance ma-

trix introduced at the beginning of the Chapter and used a subsequent projection of the

BLOCH modes onto a plane wave basis. This approach yields an impedance matrix for

every incidence angle, which expresses the mutual impedance of the RAYLEIGH expan-

sion components of the respective BLOCH mode. While this does not require the FMA

to be valid, the simplicity of the impedance framework is abandoned signi�cantly. Their

work shows a high conceptual clarity of the issue of �nding impedance de�nitions and

points at the delicate problems associated with it. As a main problem, they identify the

fact that the expressions between the different components are entangled and no proper

absolute de�nition is possible in the multimode excitation case. When we review the de-

rivation using the adjoint impedance framework up to this point, we see that this problem

is of fundamental character and eventually an expression of adjoint reciprocity between

the eigenmodes of the systems. In the next paragraph, it will be shown that this issue can

even occuralthough the FMA is valid.
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Plasmonic and hybrid plasmo-dielectric waveguides. The last paragraphs have shown

how particular system properties such as absence of dissipation, transversality of the

solution or periodicity of the eigenfunctions allow to derive certain absolute impedance

de�nitions. Although the traditional derivations for impedance expressions in the cases of

homogeneous media and RF waveguides followed totally different approaches, we were

able to show that all of them originate from the general adjoint impedance de�nition we

derived in Eq. (3.23). Thus, we believe it represents the natural generalization of the

quantity »impedance« in terms of adjoint eigenmodes.

For the structures that are of main interest in this thesis, i. e. nanooptical waveguides

and antennas, we are left with the full generality of the formula. The highly localized

�elds that are typical for plasmonics render the use of a plane wave basis useless for

practical means so that no spatially constant factor can be pulled out of the integrals.

The high operation frequency and use of noble metals with signi�cant loss in that dom-

ain prevent the usage of perfect conducting boundaries and the geometry becomes an

open one. This situation concentrates all the methodological problems with de�ning an

impedance when it comes to plasmonic waveguides or waveguides involving plasmonic

elements. We will consider here the two structures that are investigated in more detail

and with respect to other issues in ChaptersIV and V.

The �rst example considers a standard geometry in plasmonics. It is shown in Fig.3.2(a).

The SPP mode of a thin gold �lm (denoted j� + i ; its dispersion relation is found by sol-

ving Eq. (2.41)) propagates towards the interface of a periodically structured SPP grating.

The fundamental BLOCH mode in the grating is denoted with j + i . This structure can

function as a BRAGG mirror for the plasmon, provided that certain conditions are met

regarding the proper period and �lling factor as we will see later. Our main concern here

is not the structure itself, but rather the question if it can be successfully described by the

adjoint impedance framework.

The problem possesses the same symmetry properties that allow for the simpli�ed ge-

neralized impedance formula Eq. (3.26). The reference mode is the illuminating SPP

mode of the gold �lm. In contrast to plane waves, SPPs as a reference mode system do

not allow for a further analytical simpli�cation in the sense that the contributions of the

structure and the reference modes can be strictly separated. They stay entangled in the

integral.

Let us analyze this con�guration in detail. Since we deal with a TM solution to the

HELMHOLTZ equation, the magnetic �eld has just a Hy( x, z) component. We want to
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Figure 3.2. (a) Problem geometry: The adjoint modes of a plasmonic waveguide are coupled to the fun-
damental BLOCH mode of a BRAGGre�ector. Note the crucial choice z0 for the interface and the symmetric
choice of the unit cell. F F denotes the �lling factor of the grating. (b) Comparison between the rigorous
calculation, and the impedance description for an operating wavelength of � 0 = 1550 nm. (c) Calculated
adjoint impedance ratio across the BRAGGresonance position.

identify this component with the functions � ( x, z) and  ( x, z) in the two regions by

� ( x) = H ref
y ( x),  ( x, z) = Hb,y( x, z). (3.38)

� ( x) does not depend onz due to the z-invariance of the reference structure whereas

 ( x, z) does because the mode in the grating is a BLOCH mode. In Appendix A2 we

derive the explicit analytical formula for the situation considered here by inserting these

functions into Eq. (3.26). This yields

Z
Zref

=
neff

nref
eff

�



" � 1( x, z0)

�
� 



" � 1

ref ( x)
�

� 

�
i

nref
eff � k0

�



" � 1( x, z0)

�
� @  

@z

" � 1

ref ( x)
�

� 

, (3.39)

where



" � 1( x, z0)

�
f g

=

�
1

" ( x,z0) � f ( x, z0) � g( x, z0) dx
�

f ( x, z0) � g( x, z0) dx
(3.40)
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is an abbreviation for tangential averaging of the impermittivity with the product f ( x, z0)�

g( x, z0) as a (complex valued!) weight function at the interface plane z0. If we compare

with Eqs.(3.28), we see that we �nd an analogous structure and may de�ne the absolute

impedance of the SPP waveguide as

Zref = Z0 � nref
eff �



" � 1

ref ( x)
�

� 
. (3.41)

The absolute impedance of the grating itself,

Z = Z0 � neff



" � 1( x, z0)

�
� 

�
i

k0

�


" � 1( x, z0)

�
� @  

@z
, (3.42)

however, contains contributions from the reference mode �eld � ( x) and is thus not in-

dependent of the reference! This re�ects the same degree of freedom that the incidence

angle brings in for the tangential impedances of the homogeneous media case.

However, although we cannot �nd the absolute impedance of the SPP grating, wecan

�nd the impedance of the grating relative to the waveguide. What may be the practical

use of such an approach? Modern optical systems consist of many functional parts, just

like modern microelectronics. One may simply �x a speci�c modal reference system, say

the fundamental mode of a single mode optical �ber, a Gaussian laser resonator mode,

or the input SPP mode in our case. Then, one may measure the impedance of all functi-

onal components relative to this de�ned reference. In this way, one can use much of

the simplicity of the impedance framework for the design of sophisticated nanooptical

networks.

The only prerequisite is that the FMA is valid. Fig.3.2(b) shows a comparison between

the rigorous a-FMM calculation with all modes and the result using the adjoint impedance

framework, which makes use of just the fundamental BLOCH mode. It can be seen that

they are in very good agreement inside as well as outside the region of the bandgap,

where the BLOCH mode becomes evanescent. Fig.3.2(c) shows the calculated complex

values for the relative adjoint impedance of the SPP grating.

The structure considered in this example is the same that will be used for an enhanced

nanoantenna design in ChapterIV. The optimization of the re�ection feedback is the key

to enhance the performance of the antenna and we have just proven that this design

process can be fully handled by the adjoint impedance framework.

Let us repeat this analysis with a structure which will be treated in depth in Chapter V.

A dielectric slab waveguide is coupled to a BLOCH periodic structure that supports the

55



III Generalization of the impedance using the adjoint eigenmode framework

260

240

220

200

180

250 300 350 400 450 500
period [nm]

260

240

220

200

180

250 300 350 400 450 500
period [nm]

rigorous (a-FMM) impedance model
0

-5

-10

-15

-20

-25

re
fle

ct
iv

ity
[d

B
]

Figure 3.3. Comparison between rigorous calculation and impedance treatment of the structure shown
in Fig. 5.3. The hybridization into a Waveguide Plasmon Polariton is well reproduced. The physics of the
structure is discussed in ChapterV. � = != 2� is the frequency.

propagation of Waveguide Plasmon Polaritons. The geometry is shown in Fig.5.3 on

page 87. Fig. 3.3 shows the calculated re�ectivity into the TM 0 waveguide mode as a

function of frequency and period of the BLOCH lattice. We see a bandgap BLOCH mode

as well as the localized plasmonic mode of the nanostructures. Although the interaction

between them is complicated as will turn out later, it can again be fully described by

the adjoint impedance framework. Deviations occur for the plasmonic mode and small

periods due to the excitation of higher order modes, which makes the FMA a less good

approximation.

If we take a close look at Eq. (3.39) and its derivation in Appendix A2, we see that

the critical contribution for determining if F z0
vanishes or not is @  

@z

�
�
�
z0

. If it can be made

zero, e. g. by an additional symmetry, we get

Zref = Z0 � nref
eff �



" � 1

ref ( x)
�

� 
Z = Z0 � neff �



" � 1( x)

�
� 

. (3.43)

The modal entanglement is formally re�ected by the presence of � ( x) and  ( x). Ho-

wever, since the FMA needs to be valid, we can put� ( x) �  ( x) at the interface and

achieve a decoupling into absoluteimpedance de�nitions

Zref = Z0 � nref
eff �



" � 1

ref ( x)
�

� 2 Z = Z0 � neff �


" � 1( x)

�
 2 . (3.44)

Note that � 2( x) and  2( x) are complex valued mode functions in the general case of

adjoint reciprocity. If " ( x) and " ref( x) are real-valued, one can switch to the conjugated

reciprocity and the weight functions become j� ( x)j2 and j ( x)j2, i. e. the modal intensi-

ties. The inhomogeneity of the permittivity is accounted for by introducing the transverse
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average of the impermittivity with the proper weight function. For this case, the system

behaves entirely analogous to the homogeneous TM case Eq. (3.28) that was introduced

earlier in this section and may be described by anabsoluteimpedance.

For the case of the simple SPP introduced in Sec.2.1.2, one can evaluate Eq. (3.44)

analytically. This yields

ZSPP= Z0 �
•

" 1 � " 2

" 1 + " 2

˜ 1=2

�

" 1
" 2

+ " 2
" 1

" 1 + " 2

. (3.45)

This expression represents the adjoint modal impedance of an SPP under Fundamental

Mode Approximation in full analogy to the electrical engineering language.
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IV. Modally enhanced optical

nanoantennas

This chapter investigates the coupling of a localized mode of a nanoantenna to the eva-

nescent mode of a grating, with the goal to enhance the performance of the antenna. This

chapter is built on the investigations in Sec. 3.2. While the theoretical description was

in the foreground in the last Chapter, we concentrate on how to enhance the practical

performance using the adjoint modal framework.

It will be shown that the localized resonance of a plasmonic antenna can be regarded as

the resonance of a in- and a outward propagating mode,i. e. an adjoint mode pair. This

mechanism can be in�uenced by altering the coupling of the modes to their surrounding.

While an antenna usually couples only to the free space modes which characterize the

surrounding of the antenna, the tuning of the modal environment will be shown to have

a bene�cial effect.

4.1. Increase of feedback by modal tuning

A metal nanoparticle can support a localized plasmonic mode. This mode will in general

be dependent on its shape, size and material. The electromagnetic properties of this mode

(�eld localization, far-�eld behavior, resonance frequency, �eld enhancement) determine

whether this particle will make a good antenna [218] . In order to do so, the mode needs

to be leaky to the space surrounding the antenna, which is usually associated with a strong

dipole contribution in the multipole expansion of the modal �eld. The surrounding of the

antenna is what we want to focus our attention on.

In this section, we want to employ a complete modal picture of the nanoantenna and its

surrounding as a Fabry-Pérot-type resonator[125–131] . The nanoantenna itself is theo-

retically decomposed into a waveguide and two terminations. The geometry and material

composition will determine the spectrum of propagating eigenmodes of the waveguide.
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The dispersion relation already reveals important properties, such as the level of Ohmic

losses (by the imaginary part of the propagation constant) or whether a waveguide mode

will leak into one or even both surrounding half-spaces (when its real part lies inside the

light cone). The speci�c excitation conditions determine which modes will actually be

present in a speci�c situation.

The propagating mode(s) will eventually reach a termination where the waveguide

ends. The MAXWELLboundary conditions have to be met at this discontinuity and form

a modal coupling problem with the surrounding. It can be treated analytically in simple

cases, very much as in MIE theory. However, most geometries cannot be solved analyti-

cally anymore and require involved numerical techniques as outlined in Sec.2.2. In the

previous Chapter, we have shown under which conditions an impedance treatment of the

problem is possible as an engineering-fashion alternative.

The coupling of the adjoint for- and backward propagating modes forms the Fabry-

Pérot problem which continuously couples them. A localized resonance forms after a

complete round-trip when the phase is matched. This makes the �nite nanostructure an

antenna.

The aim of this chapter is to demonstrate the enhancement of the antenna functionality

by modifying the coupling at the terminations. We will follow the modally resolved pic-

ture of that problem, which we pursue throughout this thesis. A logical way to enhance

the antenna feedback is to increase the fraction of energy which is coupled back into the

structure. This can be done by increasing the modal re�ection coef�cient at the termi-

nation by some kind of modal mirror. We will realize this by modifying the surrounding

with a grating structure, such that a bandgap occurs at the frequency of the waveguide

mode.

4.1.1. Proof-of-principle: 2D realization

In order to realize this concept, we start with a simple 2D geometry shown in Fig. 4.1.

A 30 nm thick gold �lm is embedded in a dielectric surrounding. We will assume fused

silica (" = 2.10) for the sake of simplicity. The problem is invariant in y-direction. The

more realistic but slightly more dif�cult case of a �lm on a substrate is treated in the next

Section.

The propagating plasmon solutions on the upper and lower side of the �lm can interact,

when it is suf�ciently thin [219] , which is the case here. As a result, two hybridized

bound modes exist. One mode has a symmetric �eld distribution and a larger propagation
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Figure 4.1. A simple 2D structure
to test the approach. The antenna
is built of a 30 nm thin plasmonic
�lm waveguide. Periodic corruga-
tions to both sides increase the mo-
dal feedback which forms the an-
tenna resonance.

constant, while the other has an antisymmetric �eld and a lower value of � . We take into

account the full dispersion of gold [220] and calculate the effective mode index of the

symmetric mode at 800 nm operation wavelength by numerically solving Eq. (2.41) as

neff = 1.67 + 2.33 � 10� 2 i . This mode is favorably used for operation in the case of an

embedding dielectric, since it resembles the overall symmetry of the structure.

We will now have a closer look into the re�ection mechanism of the propagating sym-

metric mode by employing our modal analysis framework. Let it be denoted byj� + i and

its complex propagation constant by � = k0neff. As the mode propagates along the �lm,

the change in amplitude and phase is given by exp[ i � L] , until it reaches the termination.

L denotes the length of the antenna. Behind the termination, the set of eigenmodes is de-

noted by j �
n i . Without any additional structure attached, this will be plane waves. This

is the same kind of modal interface problem we treated analytically in chapter III . The

mismatch between the sets of eigenmodes re�ects the »impedance mismatch« between

the waveguide (and eventually the nanoantenna) and free-space. The last chapter has

outlined a strategy how this problem can be treated and understood in »RF language«.

We just need to recall Eq. (3.16) in order to solve for the modal re�ection coef�cient.

Many different plane waves j ni in different directions will in general be excited by the

plasmon mode behind the termination due to the strong modal mismatch. We thus use

our a-FMM code to solve for the coef�cients rigorously.

The modal re�ection is determined by the behavior at the termination which constitutes

a discontinuity for the eigenmode j� + i and enables back-coupling into the adjoint mode

j� � i with a complex re�ection coef�cient r . A good test system to investigate this is to

interrupt the �lm by a small gap. We numerically calculate r as a function of increasing

gap sizeg. The result is shown in Fig.4.2. For very small gaps ofg < 20 nm, the mode can

ef�ciently couple over the gap since it is smaller than the decay length in the surrounding
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Figure 4.2. Amplitude and phase
of the complex re�ection coef�-
cient of a SPP mode impinging at
a gap in the gold �lm. The results
were calculated using the a-FMM.
j r j = 0.32 and ' r = 0.6� is the
converged value for an open termi-
nation of the gold �lm and thus de-
�nes the generic feedback for the
rod antenna build from a �nite si-
zed SPP waveguide.

dielectric, which is the characteristic length scale for that problem. A peak forms at

g � 150 nm and shows a re�ection amplitude of j r j = 0.35. For higher gap sizes, visible

but strongly damped periodic »ripples« occur which can be attributed to a Fabry-Pérot-

like problem for the modes j �
n i in the gap. The termination acts in a way like an antenna

feed point. For large gapsj r j converges to 0.32 and' r to 0.6� � 1.89 rad. This value

represents the strength of the feedback for an unmodi�ed surrounding. Interestingly, the

phase jump upon re�ection is neither exactly 0 nor � , but somewhere in between.

The backward-propagating modej� � i will eventually reach the termination on the ot-

her side, get partially re�ected again into j� + i and so on. If we assume both terminations

to be equal, r applies to both sides. The total modal amplitude A starts to build up in a

Fabry-Pérot-like fashion.

We consider the case that some arbitrary external excitation initially excites the mode

of interest with a complex modal amplitude a0. The �nite length L of the structure now

leads to a build-up of the total modal amplitude which can be describes as a complex

geometric series

A= a0

�
1 + r 2 e2i � L + r 4 e4i � L + . . .

�
= a0

1X

n= 0

�
r 2 e2i � L

� n
=

a0

1 � r 2 e2i � L
. (4.1)

If we use r = j r jei ' r and � = k0neff = 2�=� 0 � (n0
eff + in

00

eff), this becomes

A=
a0

1 � j r j2 e� 4� neff
00L=� 0 exp

�
2i (2� n0

eff L=� 0 + ' r )
� . (4.2)
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Figure 4.3. Modal am-
plitude of the antenna
SPP mode calculated by
Eq. (4.2) for � 0 = 800 nm.
The peaks denote the loca-
lized antenna resonances
which ful�ll Eq. ( 4.3). By
adding the grating struc-
ture to the bare antenna,
the maximum amplitude
is increased by a factor of
1.68.

The phase term leads to an oscillatory nature of the amplitude which becomes resonant

when it equals 2� . This translates to a condition for L being

2� n
0

eff L=� 0 + ' r
!

= � � � , � 2 Z . (4.3)

In this condition, we meet again the simple � 0=2 dipole antenna, which is realized by

having n0
eff = 1 and ' r = 0. The real part of the transverse mode's effective indexn

0

eff can

be viewed in two ways: it reduces the effective wavelength or it increases the effective

length of the antenna. This leads to a reduction in the physical size of the device compared

to its RF counterparts. An interesting effect is given by' r . If it approaches � , it becomes

possible to have the lowest order antenna resonance even forL � � 0! This case can be

viewed as the limit of an antenna that consists »just of terminations«, which was also

discussed in[130] .

The maximum value for the total modal amplitude is given by

Amax =
a0

1 � j r j2 e� 4� neff
00L=� 0

, (4.4)

and is limited solely by three factors: the excitation ef�ciency of the mode of interest, the

strength of the modal re�ection and the round-trip loss of the mode determined by neff
00.

The modulus of the modal amplitude is plotted in Fig. 4.3 as a function of L for two

different values of r . The case of the bare antenna corresponds tor = 0.32 e1.89i as

already discussed. Several peaks are visible which constitute the antenna resonances
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mode re�ection
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of different orders. They decrease in amplitude for increasing L due to higher round-

trip losses. The lowest order antenna mode, which corresponds now to a longitudinal

resonance of the symmetric transverse mode in our language, is found atL = 180 nm.

The second plot belongs to the antenna with modi�ed terminations, which is discussed

in the next paragraph.

Modi�ed termination. We now consider a periodically corrugated gold �lm. Instead of

a single gap, the re�ections from multiple gaps have to be considered. We numerically

scan the periodp and the �lling factor F F= 1� g=p of a grating made from �ve corruga-

tions in the metal. We checked that �ve corrugations were suf�cient by simulating the

dependence ofr on the number of corrugations in another simulation (not shown here,

see[TK2014] ). The results are shown in Fig.4.4.

Different peaks evolve for certain values ofp. They are attributed to the formation of

re�ection resonances, where the BRAGGcondition

� = m �
�
p

, m 2 N (4.5)

is met with an arbitrary integer m. This makes the grating a bandgap medium for the

fundamental plasmon mode. An optimal �lling factor, which works also for higher order

resonances, exists at values around 0.9. This corresponds to a gap size with optimal

balance between re�ection and transmission to the next gap. All resonances wash out for
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small �lling factors and the re�ection amplitude reaches the background value j r j = 0.32,

which was discussed in the previous paragraph. This effect becomes more pronounced

for larger grating periods, since the plasmon mode carries intrinsic loss. At the peak

positions, j r j becomes as high as 0.70 and has thus more than doubled, compared to the

case without modi�ed termination. The re�ection phase is shown as an inset in Fig. 4.4. It

shows a rapid change when scanning through the re�ection peak, which is characteristic

for a Bragg resonance. If we recall the fact that the re�ection phase determines also the

effective resonant length of the antenna it is clear that the operation bandwidth of the

device will become narrower.

Besides the case of the free end termination, Fig.4.3 shows also the modal amplitude

for the enhanced case. As expected, the peak value of the modal amplitude increases.

The shift in resonant length comes from a slight change of' r compared to the case of a

free end.

An increase in the peak modal amplitude by a factor of 1.68 is found for the modi�ed

termination. Since the electromagnetic energy density is proportional to the square of

the �eld strength, an enhancement of 2.8 can be expected.

This prediction of the modal model has to be proven by a rigorous numerical treat-

ment, which takes all the modes into account. Such a simulation was performed by Jing

Qi in the Institute of Condensed Matter Theory and Optics in Jena using the Finite Diffe-

rence Time Domain (FDTD) method. The electromagnetic energy density in close vicinity

to the terminations of the nanoantenna were compared in the bare and enhanced case.

The simulation ran until the parameters of interest had converged, so that we can as-

sume comparability to the steady-state case which was treated here. Details are given in

[TK2015] . An increase of 2.9 for the energy density was the result of the FDTD simula-

tion, i. e. a very good agreement with the theory. This proves that our modal treatment

was able to predict both qualitatively and quantitatively the enhancement mechanism for

the nanoantenna.
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Figure 4.5. Sample layout for the 3D realiza-
tion. A central circular disc serves as a nanoan-
tenna, which is surrounded by a periodic ring
structure that enhances the resonance.

4.2. Experimental demonstration using Scanning Near-Field

Optical Microscopy and multiphoton Photoemission

Electron Microscopy

In the last section, we have used a simple 2-dimensional nanoantenna geometry to de-

monstrate the possibilities for enhancing their performance by using modal considerati-

ons. These were validated by rigorous numerical simulations. In order to test our theory

experimentally, we need a truly 3-dimensional geometry. As a prototype, we use a disc

antenna in this section. The symmetry properties of the disc allow us to excite the an-

tenna resonance from normal incident illumination, irrespective of the polarization angle.

A sketch of the sample design is shown in Fig.4.5. A central disc serves as the primary

antenna element. In the enhanced case, this disc is surrounded by a number of concentric

rings.

The nanophotonic dimensions of the sample exclude the far-�eld investigation due to

the diffraction limit. From the available experimental methods which are not limited

by diffraction, we chose to use Scanning Near-Field Optical Microscopy (SNOM) as a

quasi-standard and multiphoton Photoemission Electron Microscopy (n-PEEM). Especi-

ally the latter is relatively new to the �eld and becomes increasingly important. The use

of ultrafast laser sources to excite the sample and the high achievable spatial resolution

open new possibilities for ultrafast nanophotonics. One may also view the antenna in a
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different way when using n-PEEM. Since it is the emitted electron yield, which is actu-

ally recorded, it becomes possible to see the structure also as an »ultrafast antenna for

electrons«. Tailoring the emission of electrons on small space and time scales is an im-

portant topic in contemporary physics [221–229] . In this way, nanophotonics helps to

create experimental platforms for new fundamental physics.

4.2.1. 3D realization of an enhanced disc antenna

The design of the 3D sample adapts the main concepts of the previous section. As central

resonator, we use a circular disc with radiusR, which was milled out of a thick gold �lm

using focused ion beam milling (FIB).

The relevant modes in this kind of geometry are so-called HANKEL surface plasmon

polaritons (HSPP). The adjoint inward- and outward propagating HSPPs correspond to

a �eld solution which is proportional to the H ANKEL functions of �rst and second kind,

respectively. We make use of the same nomenclature as for the single interface problem

on page21. However, the solution is formulated in cylindrical coordinates (r, ' , z), where

z is the surface normal andnot the propagation direction here. The normal component

of the electric �eld is given by [230, 231]

E�
hspp,z(r, ! ) / H (1,2)

l

�
khsppr

�
�
� hspp

" m

�ei l ' �eikmz, khspp = � hspper = k0

•
" 1" 2

" 1 + " 2

˜ 1=2

er . (4.6)

The HANKEL functions of �rst and second kind are denoted by H (1,2)
l ( r ). Using a mathe-

matical approximation for the H ANKEL functions by expanding into orders of r � 1=2 [ 232] ,

it is possible to simplify the electric �eld of the HSPP as follows

Ehspp(r, ! ) �
E0Æ

� hsppr
� ei � hsppr �

�

ez �
km

� hspp

er

�

� ei l ' � eikmz. (4.7)

The next term of the approximation in parenthesis [232] would read

km

� 2
hspp

�
•

1
2

er + il e'

‹
�

1
r

(4.8)

and describes the local deviation of the HSPPs polarization properties from plane SPPs

(additional E' -component). However, it is damped away in the �rst several oscillations,

so that Eq. (4.7) may be called the far-�eld approximation of the HSPP. Apart from the
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stronger (� hsppr ) � 1=2 decay term and the angular ' -dependence, its behavior is locally

analogous to the plane SPP. It will become handy in the quantitative analysis of the expe-

rimental data in the next section.

In the light of the discussion above, the localized plasmonic resonance of the disc can

be regarded as modal Fabry-Pérot-type resonance of the in- and outward propagating

HSPPs. The resonance condition reads as

� 0
hsppR+ ' r = � � � , � 2 Z (4.9)

in full analogy to the general case Eq. (4.3). The disc radius R plays the role of the

generic antenna length, which determines the resonance frequencies together with' r ,

the modal re�ection phase of the outward propagating HSPP. In our sample design, the

resonant disk radius was 90 nm.

Supporting second order bandgap structure. The goal is to increase the electromagne-

tic �eld enhancement by increasing the modal feedback at the disc circumference. As in

the previous chapter, we make use of a periodic structure for that purpose. In this case,

it will be concentric rings surrounding the central disc, which also will be FIB milled out

of the gold layer. The distance between the rings, which form the circular grating period

p, play the critical role.

Recalling the results for the one-dimensional case (Fig.4.4), it is clear that a ful�llment

of the BRAGGcondition

� 0
hspp = m �

�
p

, m 2 N (4.10)

leads to the desired increase in re�ection. Conventional BRAGGgrating structures work

simply in the �rst order m = 1. Fig. 4.4 suggests, however, that higher ordersm > 1 yield

an equivalently good increase in modal feedback. This opens the possibility to optimize

also the coupling of the antenna to the exciting plane wave. The resonant HSPP antenna

mode is excited just quasi-statically in the case of the bare disc. No phase-matching is

involved in that coupling process. Utilizing a grating, one has the possibility to phase-

match the BLOCH mode of the grating to the propagating HSPP mode by conservation of

momentum. If we assume a plane wave incident at an angle� , this »BLOCH-condition«
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Figure 4.6. Band diagram for the adjoint BLOCH

modes in the grating structure, which are given
by the inward and outward propagating HSPPs.
A second order BRAGG grating allows the inte-
raction of perpendicular incident radiation with
both adjoint modes.

reads as

� 0
hspp = k0 sin � + n �

2�
p

, n 2 Z . (4.11)

Both eqs. (4.10) and ( 4.11) can have simultaneous solutions for the integersm and n

when the condition

sin � =
� 0

hspp

k0

�
1 � 2

n
m

�
(4.12)

holds. It describes the possible interactions of in- and outward propagating HSPPs with

each other, as well as plane wave modes of free space at certain angles� . The simplest

solution is found for the case of normal incidence (� = 0), with n = 1. We would like

to call such a grating a »second order« bandgap structure since it works in the second

BRAGGorder m = 2.

The situation becomes clearer when the band diagram for the BLOCH modes of the

grating structure in Fig. 4.6 is considered. A bandgap is generated at the band edge in

the �rst order B RAGG resonancem = 1. In- and outward propagating HSPP are phase-

matched at that point and can couple, which generates the BRAGGmirror effect. However,

the second order BRAGG resonance m = 2 generates a bandgap at the� point in the
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band diagram. Besides the BRAGG mirror effect of in- and outward HSPP coupling, a

simultaneous phase-matched interaction with normally incident plane waves becomes

possible. Form = 4, n = 2 for instance and a given n0
eff = 1.67 as discussed above, the

interaction with plane waves at angles of � = 0� or � 54.6� would become possible, which

are of course the 0 and� 1 diffraction order. More and more plane waves as eigenmodes

of free space can become involved asm grows and the coupling process becomes more

and more multimode.

If we take a look back into our generic theory Eq. (4.4), the second order grating should

not only increase j r j, but also a0 and so enhance the overall performance even further.

The optimization of j r j alone promised a factor of 1.68 in the modal amplitude or 2.8

in the intensity as discussed above. We will now check our assumption by experimental

investigations of a fabricated sample.

4.2.2. Experimental investigation

We fabricated two samples according to the considerations in the last paragraph to verify

our assumptions experimentally. When it comes to nanooptical structures, the intrinsic

sub-wavelength size hinders the use of traditional far-�eld characterization techniques

due to the ABBE diffraction limit [11] . Methods which are sensitive to the optical near-

�eld in direct vicinity of the structures have to be employed.

Among such techniques, scanning near-�eld optical microscopy (SNOM) is a very wi-

dely used one[233–239] . The key principle of SNOM is to bring a deep sub-wavelength

probe as tiny perturbation in very close vicinity to the sample which is illuminated by a

strong light-source, usually a laser. A small amount of light will be scattered into the far-

�eld and converted to propagating radiation. This is collected either by a �xed, distant

detector (scattering-SNOM) or coupled directly to an optical �ber and then analyzed by

a detector (collection-mode SNOM). In both cases, the near-�eld probe is rastered over

the sample point-by-point by moving either the sample or the probe to acquire an image.

Different homodyne or heterodyne techniques exist using an opical reference to acquire

also the local optical phase. Probes are either very sharp tips known from atomic force

microscopy (scattering SNOM), or tapered tips which are drawn directly from a dielectric

optical �ber which serves as far-�eld signal collector (collection-mode SNOM).

Although SNOM can be seen as a work horse in experimental nanophotonics, it has a

number of drawbacks. The scanning nature of the method prevents high speeds in the

image acquisition and makes ultrafast investigations challenging. The requirement of a
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probe in close vicinity to the sample under investigation disturbs the optical functionality

by adding an additional interaction channel with the modes of free-space (scattering

SNOM) or the optical �ber (collection-mode SNOM). The strength of this interaction is

hard to judge and depends on the speci�c sample. Moreover, it must be assumed that it is

spatially constant during the scanning process which can be hard to achieve in reality for

a sample with resonant nanostructures. For the reasons above, we wish to cross-check

and compare the SNOM results also by another method.

Photoemission electron microscopy has achieved an increasing amount of interest in

the nanophotonics community in the last years [240–254] . Originating from solid-state

physics and surface science as a tool to investigate material properties, the availability

of highly reliable ultrafast laser sources with high repetition rates in the last years has

�red the imagination to investigate optical excitations such as surface plasmons at the

nanoscale with the resolution of an electron microscope. A pump-probe scheme opens the

possibility to perform time-resolved experiments with remarkable temporal resolution.

In contrast to SNOM, no probe is required which could disturb the optical functiona-

lity. The sample is optically excited from the far-�eld by a laser. The emitted electrons are

accelerated by a static electric �eld, imaged by electrostatic lenses, ampli�ed by channel-

plates and detected by a CCD on a �uorescent screen. No scanning is required although

many frames have to be captured in order to collect a suf�cient number of electrons.

A third method has to be stated for completeness, although it is not used in this thesis.

While SNOM and PEEM rely on optical excitation of the structures under investigation,

the required energy can also be provided by other means. An interesting possibility is

to use an electron beam and monitor its energy loss when it passes through the struc-

ture, exciting plasmons. This techniques is known as Electron Energy Loss Spectroscopy

(EELS). It does not require an excitation by light and can consequently also probe modes

which would otherwise not be excited due to selection rules. EELS is used to map the

eigenmodes of plasmonic structures with high spatial resolution[218, 255–267] .

SNOM results. Being a standard method to clarify optical near-�eld distributions, we

use collection-mode SNOM with a gold-coated �ber tip to investigate our 3D nanoantenna

sample. This method had been successfully applied to a variety of different samples in our

workgroup before [TK2017, 268–273] . The experimental setup is shown on the left side

of Fig. 4.7. A laser diode operating at a wavelength of 785 nm was collimated, polarized

and used to illuminate the sample from the substrate side. On the top side, the SNOM tip

70



IV Modally enhanced optical nanoantennas

MM

MM

HWP

CM

BPD

S

LPEEM BS

C
C

D

laser diode
785 nm

gold-coated
aperture

SNOM tip

Coherent Micra
Ti:Sa oscillator

800 nm

Figure 4.7. Experimental setups used to verify the disc-ring antenna design. (left) A SNOM tip scans over
the antenna structure which is illuminated by a laser diode through the substrate. (right) A ultrafast laser
source is incident at 4� on the sample. Emitted photoelectrons are imaged by the n-PEEM.

was moved and scanned over the sample by piezoelectric actuators. The collected light

was coupled into a single-mode optical �ber and transmitted to the detector.

Due to the experimental circumstances, certain modi�cations had to be made to the

original sample design. The illumination scheme from below required that a trade-off be-

tween light coupled through to the antenna and transmitted background light had to be

found. We therefore increased the experimental gold �lm thickness to 50 nm. Moreover,

the antenna is now not embedded into a dielectric, but placed on a fused silica substrate

(" = 2.10). In this con�guration with broken symmetry, an operation in the antisymme-

tric hybridized �lm plasmon mode is more favorable [TK2015] . We used Eq. (2.41) to

calculate its effective index numerically asneff = 1.02 + 4.13 � 10� 4 i , which is extremely

close to the effective index of the »original« HSPP given by Eq. (4.6) as 1.02+ 1.44 � 10� 3 i

at this wavelength. We adjusted the spatial dimensions of the grating accordingly. The

�nal nanoantenna structure was patterned in a 50 nm gold �lm using Focused Ion Beam

milling (FIB). The central disc had a radius of 90 nm, the rings where 80 nm wide and

had a period of 770 nm, which exactly matches the second order bandgap requirement

from above. We surrounded the central disc structure with �ve rings and made a second

sample with just the bare disc for comparison.

The results of the measurements are shown in Fig.4.8. When we investigate just the

bare disc, a clear hot-spot of electromagnetic energy is observed at the position of the disc.

This indicates that a localized plasmonic resonance is indeed excited on the structure.

Apart from that hot-spot, we do not see any further signi�cant features in the �eld pro�le.

We �nd a much different picture for the ring-enhanced structure. Strong side lobes

indicate a pronounced interaction with the grating. Taking into account the background
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Figure 4.8. SEM image, SNOM measurement results and FDTD modeling of the bare disc antenna as well
as the ring-enhanced structure. The scale bar is 2µm long in each image. The spatial resolution is limited
to 180 nm due to the apex size of the aperture SNOM tip.

from the illumination, the intensity in the central area has grown signi�cantly by a factor

of � 5. As expected, this is larger than what we have theoretically predicted for a �rst

order BRAGGgrating and con�rms our design considerations of the nanoantenna.

We also compared the measured �eld distributions with rigorous FDTD data from simu-

lations. The apex of the gold-coated �ber tip had a diameter of 180 nm and approached

the sample at an angle of 30� with respect to the surface normal. This limits the resolution

of the image signi�cantly and requires a modi�cation of the raw simulation data to be

comparable. We used an extraction distance of 100 nm for the FDTD data and projected

the �eld components to account for the angled SNOM tip [TK2015] . The data results are

shown in Fig. 4.8 and are in good agreement with our measurements.

n-PEEM results. We use a near-normal incidence setup and n-PEEM to investigate the

3D nanoantenna sample. This scheme is free from the restrictions regarding the sample

design. We deposited a 200 nm thick gold �lm, where the plasmonic excitations cannot

interact with the bottom side of the sample any more, i. e. the original design discussed

in Sec. 4.2.1. We used an ultrafast laser source at 800 nm central wavelength which

corresponds to a photon energy of 1.55 eV. The effective mode index of the HSPP remains

almost unaltered to the SNOM experiments, but we accounted for the slightly different
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Figure 4.9. Logarithmic plot of the n-PEEM yield
for the bare nanodisc in TM polarization. The an-
tenna resonance is clearly visible although the ab-
solute electron count is low (integration time 2 h).
A very weak excitation of outward propagating
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wavelength by increasing the period to p = 780 nm to meet the second order bandgap

requirements. The work function of evaporated gold in our facilities is approximately

W � 4.6eV. Thus, a nonlinear 3-photon process is necessary to emit an electron. This

requires a high laser intensity at the sample position.

The experimental setup is shown on the right side of Fig.4.7. We used a PEEM manu-

factured by Focus GmbH (Germany) to acquire an image of the photoexcited electrons.

For this purpose, emitted electrons where accelerated in a 16 kV static electric �eld and

imaged by an electrostatic lens system. The special design of the PEEM column provides

two possibilities for illumination: Grazing incidence under 65 � and near-normal inci-

dence at 4� . We used the latter for our experiments. The pulses lateral spatial intensity

distribution had a wide Gaussian shape. It was imaged onto the sample by a lens of focal

length 250 mm, providing a broad plane-wave-like illumination at the sample position.

We investigated the bare nanodisc �rst. A small incidence angle of 4� leads to the fact

that TE and TM polarization become distinguishable. This is of particular importance,

since PEEM is known to be an experimental method which reacts extremely sensitive on

the presence of a normal electric �eld component [240] .

The result for TM illumination is shown in Fig. 4.9. The most signi�cant feature is the

dark rectangular area, which was found to be identical to the SEM inspection window

during sample preparation. A high-energy electron beam scans over the surface and mo-

di�es the work function of the last layer of atoms, presumably by enabling bonding of

remaining substances in the vacuum chamber onto the surface, such as smallest quan-

tities of carbon. This underlines the extreme surface sensitivity of the PEEM method.

Although the purity of the deposited gold suffers from that effect, it might be used in

an advantageous way. A drawback of n-PEEM lies in the lack of abilities to acquire to-

pographic images of the sample together with the secondary electron emission picture.

73



IV Modally enhanced optical nanoantennas

y

x 2 µm

E

(a)

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

2 µm

y

x

E

(b)

1.5

2.0

2.5

3.0

Figure 4.10. Logarithmic plot of the n-PEEM yield for TM (left) and TE (right) polarization of the incident
laser for the enhanced antenna. The absolute yield levels are much higher as in the bare nanodisc case
(integration time 15 min). The dashed lines denote the areas used for the analytical investigation of the
outward propagating HSPPs.

This makes the accurate establishment of a local coordinate system challenging. With the

high contrast SEM window, however, there is the possibility to overlay both pictures with

high accuracy.

The bare nanodisc acts as an optical antenna and increases electron emission by crea-

ting a hot-spot as expected and already seen in the SNOM measurements. The resonance

is excited quasi-statically without any involved modal phase-matching process of any

kind. This can be seen from the weak excitation of HSPPs on the gold �lm in the nearby

surrounding. Although the enhancement is evident, an exposure time of 2 h had to be

used in order to get a picture with good signal contrast. For TE polarization, where the

HSPP is the only source of a normal �eld component as shown in Eq. (4.7), no signi�cant

signal contrast could be achieved at all.

A different picture is found, when the ring-enhanced structure is investigated. An ex-

posure time of 15 min already yielded data with high contrast, even in TE polarization.

This supports the SNOM results and indicates that the realized structure is not only a

good antenna for light, but also for electrons. Fig. 4.10 shows a summary of the measu-

rement results. We �nd again the SEM window which serves as a marker to determine

a coordinate system. The overall enhancement is much more pronounced as in the case

of the bare disc. The excitation of HSPPs is clearly visible and follows the theoretical

cos2(' ) dependence when' measures the angle to the polarization vector in the surface

plane. We marked areas where we extracted a one-dimensional cut through the data to

analyze the excited HSPP in more detail, which will be discussed later.

In Fig. 4.11, we show a magni�ed version of the PEEM measurement data with the
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Figure 4.11. n-PEEM images overlaid with the SEM images for TM (left) and TE (right) polarization. The
overlay allows a clearer analysis of the resonance behavior.

SEM data as overlay, to clarify the details and spatial origin of the electron yield within

the antenna structure.

Although the angle of incidence is very small, a clear difference in the spatial distri-

bution of the n-PEEM yield can be seen for the two different excitation cases. In TM

polarization, a very strong excitation of the central disc takes place with minor side lo-

bes. In TE polarization, the excitation is mainly located in two main lobes.

Both cases show increased photoemission from the edges of the rings in the direction

of the polarization. This is attributed to an enhanced �eld emission at sharp sample

features.

Physical model for the n-PEEM yield. When one performs n-PEEM measurements, one

must not forget that the image data actually re�ects a very complex physical process. We

do not »see« or measure the actual optical �eld directly, but the way its presence in�u-

ences local photoemission. This process, and hence the quantitative explanation of the

measurement data (electron counts), would require a deeper look into the light-matter-

interaction itself. However, it is still possible to employ a somewhat simpler physical

model that is not able to explain all quantitative details, but still manages to »translate«

the n-PEEM data into data for the electromagnetic optical �eld, which we are interested

in. These simple models make n-PEEM a promising nanooptical characterization method.

Let us recall the standard three-step model of linear photoemission[274] . A photon of

frequency energy~h! is absorbed by an electron at the FERMI edge of the metal. Due to

its increased kinetic energy, the electron can undergo a transport process to the surface
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of the metal where it transits into a free electron state in the vacuum. In order to reach

the vacuum, the photon energy needs to be larger than the work function of the metal

Wm

~h! > Wm. (4.13)

The optical �eld itself only in�uences the �rst process while the second and third pro-

cess is dictated by solid-state physics. We can state that the electron yield will thus be

proportional to the photon absorption probability. In our given case, Eq. ( 4.13) is howe-

ver violated and a single photon has too less energy to emit an electron. A multiphoton

absorption process is therefore needed

n � ~h! > Wm (4.14)

with n = 3 in our case.

The rates for single as well as multiphoton absorption� (n) are given by FERMI's golden

rule and build up for the 1, 2 or 3 photon absorption in the semi-classical case as1 [ 275]

� (1) = 2�
e

~h2 � (!  � � ! )
�
�h j p̂ � Ej � i

�
�2

, (4.15a)

� (2) = 2�
e2

~h4 � (!  � � 2! )
�
�h j p̂ � Ej � i h� j p̂ � Ej � i

�
�2

, (4.15b)

� (3) = 2�
e3

~h6
� (!  � � 3! )

�
�h j p̂ � Ej � i h� j p̂ � Ej � i h� j p̂ � Ej � i

�
�2

, (4.15c)

where � (! ) is a normalized lineshape function (e. g. Lorentzian), j i and j� i denote the

initial and resulting quantum-mechanical free electron states, respectively, and!  � is the

transition frequency. The quantum mechanical dipole operator is denoted byp̂ = er̂ and

j� i and j� i denote intermediate electron states in the conduction band.

One sees how the process becomes more and more improbable when the order of the

nonlinearity increases, which explains the need for high �eld strengths for the process in

order to happen at all. It builds up from repetitive interactions of an electron with the

electric �eld, which itself is modeled as a linear dipole-�eld interaction. The absolute

value squared is a reminiscence of quantum mechanics itself (probability amplitude) and

not of electrodynamics. We state this here explicitly, because the yield in n-PEEM is

1At this single instance in the thesis, we mean quantum mechanical states with the Bra-Ket notation, not
the adjoint electromagnetic modes.
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often somewhat loosely attributed in literature to powers of the optical intensity In of the

electromagnetic �eld, which would be given by [276]

I 3 =
¬�
�S(r, ! )

�
�
¶3

=
1
2

�
�
�Re

�
E(r, ! ) � H� (r, ! )

� �
�
�
3

=
1

2Z0

�
E(r, ! ) � E� (r, ! )

� 3
. (4.16)

This formula has the problem that the different electric �eld components in plane ( Ek)

and out of plane (E? ) have equal weights and no cross-terms. This is not compatible

with the fact stated above, namely that TM polarization leads to much more yield than

TE, and our observation of an interference pattern of the plane wave and the HSPP in the

TE case, where the only source of a normal electric �eld component is the HSPP itself.

Our model instead connects the differential n-PEEM yieldY(r) to � (3) via

dȲ(r, t ) / n(r) � � (3)(r, t ) dt , (4.17)

where n(r) is the electron density in gold at the FERMI level. The probability for 3-

photon absorption is proportional to the absolute squared triple products of the �eld

in Eq. (4.15c). Technically, n(r) would also vary in time, since the impinging radiation

induces plasmonic excitations which are oscillations of the electron density. However, we

estimate these variations to be several orders of magnitude smaller than the bulk electron

density from the parameters of the laser we used (average powerP0 = 100 mW, repe-

tition rate frep = 80 MHz, pulse duration � = 30 fs, central wavelength � 0 = 800 nm).

The total yield is obtained by integrating over the measurement time. The model thus is

based on triple products of linear combinations of the instantaneous electric �eld, which

is different from using the time-averaged quantity intensity. Cross-terms betweenEk and

E? show up, which is consistent with our measurement in TE polarization. One learns

from Eq. (4.15c) that the coef�cients for this linear combination are constructed from the

expectation values of the dipole operator in the semi-classical case. They have the poten-

tial to explain different yields for different polarizations, since only the paths which lead

to a free electron in vacuum can contribute to the n-PEEM yield, in contrast to any bound

�nal electron state (the multiphoton absorption rate itself should not depend on polari-

zation). Calculating these coef�cients explicitly – which would perhaps require even a

full quantum-electrodynamically treatment including second quantization – is beyond the

scope of this thesis. A route for including these effects may be given by the surface cor-

rections of quantum plasmonics within a non-local hydrodynamical model of the electron

gas[261, 277–284] .
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Figure 4.12. Comparison between the n-PEEM measurement data and the »intensity3« model as well as
our temporal yield model. Colorbars apply to all images of the same polarization. Our yield model is very
good agreement with the experimental data.

Our essential model assumption will be that the yield is given by

Y(r) /

� �
�
�
�
Ēk(r, t ) + a � Ē? (r, t )

� 3
�
�
�
2

dt . (4.18)

The real parameter a accounts heuristically for the aforementioned lack of knowledge

of the quantum-electrodynamical parameters. Furthermore, it accounts for the fact that

photoemission is a process which takes place at the very surface, whereE? is discontinu-

ous in medium-averaged electrodynamics, see Eqs. (2.14). It even changes its sign in the

case of a metal, so that the question arises: Which corrections need to be applied toE?

at the very surface? We account for these circumstances by usinga as a �t parameter for

our model.

Application of the yield model to the experimental data. At �rst, one has to explain

the experimental n-PEEM pictures. Since the transient dynamics of the nanoantenna is

impossible to treat analytically, we simulated the ultrashort pulse experiment by FDTD

and used our yield model described above on the numerical data. The results are shown

in Fig. 4.12. For comparison, we also show the results based on the intensity. Our model
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Figure 4.13. Experimental data for the
outward propagating HSPPs analyzed in
the regions marked in Fig.4.9 and compa-
rison to the analytical HSPP yield model.
A very good agreement is obtained. The
spatio-temporal yield envelope is shown
as dashed curve.

is obviously much better able to reproduce the experimental results and shows very good

agreement. The used �t parameter was a = 50.

Besides comparison with rigorous numerical simulations, one desires to have a physi-

cal explanation of the experimental data. Although the transient dynamics of the inner

antenna is not straight-forward to analyze, the data from the propagating HSPPs can be

analyzed analytically. They are observed in the outer region on the gold �lm. The expli-

cit modal �eld of the HSPP solution is readily available in Eq. ( 4.7). The lowest possible

HSPP mode forl = 1 relates to a dipolar pattern with cos2 ' or sin2 ' dependence of

the plasmon energy density, respectively. We recognize these dependencies for the two

different excitation polarizations in Fig. 4.10 and also checked the quantitative matching

(not shown explicitly).

We analyze the data in further detail by taking a cut through the marked areas in

Fig. 4.10. The results are shown in Fig.4.13. The observed oscillation period of the

interference pattern differs for the TE and TM case. The HSPP is propagating perpendi-

cular to the projection of the incident k vector in the TE case (� y-direction). Therefore,

one measures exactly the plasmon wavelength� hspp = 2�=� hspp. In the TM case, howe-

ver, there is an additional component � k0 sin � to � hspp in the � x direction, depending
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on if the HSPP is co- or counter-propagating with the in-plane projection of the exciting

plane wave pulse. Since sin(4� ) � 0.07, the deviation from � hspp is only minimal. We

attribute the different background levels for the respective areas to a slight non-uniform

illumination strength at the different positions due to the Gaussian beam pro�le.

Now we have to quantitatively explain the decay rate and interference structure obser-

ved in the experiment. According to the yield model in Eq. (4.18), we have to work in

the temporal domain. The excitation is modeled as a plane wave with a Gaussian pulse

envelop Ēpw(r, t ) at an angle of incidence�

Ēpw(r, t ) = E0 cos[ k0 sin � x � ! t ] � exp
•
�

( t � sin � x=c)2

� 2

˜
, (4.19)

where

E0 =

8
<

:

[0, 1, 0] (TE)

[cos� , 0, sin � ] (TM)
(4.20)

is the polarization vector of the incident radiation and � is the temporal pulse length.

The excited HSPP pulse is modeled in a similar manner as

Ēhspp(r, t ) = Re
�
Ehspp(r, ! ) � e� i ! t

�
� exp

�

�
( t � ng x=c)2

� 2

�

, (4.21)

where ng = c0[ d� 0
hspp=d! ] is the group index of the HSPP at the central wavelength of

the laser and Ehspp(r, ! ) is given by Eq. (4.7).

The total electric �eld, which enters the yield model Eq. ( 4.18), consists of the interfe-

rence of the two �elds at the sample surface

Ē(r, t ) = Ēpw(r, t ) + b � Ēhspp(r, t ). (4.22)

A complex modal factor b accounts for the unknown excitation strength and phase of the

HSPPs.

We �t this model parameter to the experimental data and show the result in Fig. 4.13.

They are in very good agreement. It is remarkable that this fully analytical ansatz produ-

ces not only the correct oscillatory behavior and decay rates, but also correct background

levels for the n-PEEM yield far from the excitation point. Slight deviations occur for smal-

ler distances from the center, which we attribute to the deviations of our approximation
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Eq. (4.7) from the actual HSPP solution for small values of r .

The observed decay is governed by two contributions. First, there is an intrinsic com-

ponent which comes from the fact that HSPPs decay with a factor[ � 0
hsppr ] � 1=2 stronger

than plane SPPs. Second, the pulse length of just� = 30 fs leaves only a short temporal

»interaction window« in which the interference can take place. The Gaussian temporal

envelop therefore translates into a spatial envelop, which represents the width of the

HSPP pulse in a co-moving frame along the sample surface with a velocityc0=ng. From

the dispersion relation Eq. (4.6), we calculate ng = 1.08. The term � c0=ng is in the or-

der of 9 µm, which represents the characteristic spatio-temporal interaction length in the

experiment. It is now straight-forward to derive an analytical expression for the yield

envelop as

Yenv( r ) /

�

[ � 0
hsppr ] � 1=2 � exp

�

�
• ngr

� c0

‹ 2
�

� const.

� 6

, (4.23)

which is also plotted in Fig. 4.13 and leads to a remarkable agreement with experimental

data. Since all other quantities are known analytically, this expression can in principle

even be used inversely to measure the pulse length� from the n-PEEM image. One may

even think of such an ansatz to use n-PEEM to characterize ultrashort pulses.

We emphasize that the envelop model does not even need to consider the Ohmic loss

of the metal associated with a term exp[ � � 00
hsppr ] . The reason is that the aforementioned

contributions are far stronger since � 00
hspp=� 0

hspp � 10� 3. It is the limited spatio-temporal

extent of the pulse together with the analytical properties of the modal solution which

govern the observed experimental data.
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V. Hybrid waveguide-nanoparticle

systems

This chapter treats planar, dielectric waveguide geometries, which have been hybridized

with plasmonic nanoparticles on top. The goal is to incorporate functionalities mediated

by the nanostructures (�eld enhancement, new propagation properties) into the wave-

guide environment. This opens a perspective for enriching the functionality of traditional

integrated optics.

In the focus of the treatment lies the adjoint eigenmode-based description of the cou-

pling between the propagating modes of the waveguide and the localized modes of the

nanoparticles. The chapter starts with the basic interaction of a single isolated plasmonic

nanoparticle with a dielectric waveguide mode. From there, propagation properties of a

waveguide covered with a lattice of nanostructures – a metasurface – are developed. The

last section discusses possible application perspectives of the system.

The polarization properties of the waveguide modes will be shown to offer new per-

spectives for the excitation of nanostructures, which are not possible from free space.

Hybridization into a Waveguide-Plasmon-Polariton state in the case of a nanoparticle lat-

tice leads to adjustable dispersion properties (loss, effective index, group velocity and

group velocity dispersion).

5.1. Basic con�guration: Waveguide to Plasmon mode

coupling

Waveguide mode properties. We start by de�ning the test-con�guration we wish to dis-

cuss. As a basis, we will use a planar dielectric slab waveguide for simplicity. A high-index

dielectric core layer (permittivity " 2) of thickness d is placed on top of a dielectric lower-

index substrate. We will assume fused silica as a substrate material (" 1 = 2.10) and air

as cladding material (" 3 = 1.0) as a realistic design approach.
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Figure 5.1. (left) Cut-off curves of the fundamental and �rst-order waveguide modes in a slab-waveguide
with fused-silica as substrate and air as cladding. In the shaded region, the waveguide is monomode in
the entire wavelength range � 0 = 900 nm � 1800 nm. The operating point is marked with an asterisk.
(right) To-scale plot of the electromagnetic �eld components of the TM 0 waveguide mode. The Ez(r, ! )
component has a high magnitude at the waveguide-cladding interface.

We are targeting for a regime, where the waveguide is single-mode in both polariza-

tion directions to allow for a controlled and predictable interaction with the nanostruc-

tures in the cladding region. For our investigations, we use a NIR wavelength range

� 0 = 900 . . . 1 800 nm. Depending on the core thicknessd and permittivity " 2, there ex-

ists a range of possible thicknesses in which both polarizations have only a single mode

solution. The cut-off thicknesses can be calculated from Eq. (2.41) for the case k1 = 0,

which yields

dcut-off(� 0, " 2) =
� 0

2� � [ " 2 � " 1]
1=2

�

�

arctan

�
q3

q2

�
•

" 1 � " 3

" 2 � " 1

‹ 1=2

+ n � �

��

. (5.1)

There is a region of optimal parameters which is shown on the left side of Fig.5.1. Outside

this region, either no guidance at � 0 = 1800nm would be possible due to the fundamental

mode cut-off, or the waveguide would not be singlemode at � 0 = 900 nm.

A second consideration when choosing core material and thickness are the polarization

properties of the waveguide modes and possible excitation scenarios for the nanostruc-

tures which derive from them. The most simple case is TE polarization. The electric �eld

has just an Ey(r, ! ) component, so the resonant length for quasi-static excitation of the

nanoparticle needs to be in the same direction.

The situation is more complicated in TM polarization. From M AXWELL's equation, we

see that theHy(r, ! ) component leads in principle to two electric �eld components in the
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cladding Ec(r, ! ), where the nanostructure is placed

Ec(r, ! ) = �
1

i !" 0

�
1
" 1

� r �
�
H0 � exp[ i � z + ik3 x] ey

�

=
H0

i !" 0

�
1
" 1

� [ i � ex � ik3ez] � exp[ i � z + ik3 x] . (5.2)

Both components could in principle be used to excite a plasmonic nanostructure, ho-

wever, the Ex component would require the fabrication of upright standing structures

with a high aspect ratio, which makes the device mechanical fragile.

An interesting possibility is to use the Ez-component, corresponding to a longitudinal

excitation scheme which is different from quasi-static excitation. From Eq. (5.2), the

magnitude ratio compared to the transverse component is given by

jEzj

jEx j
=

k3

�
=

�

1 �
" 3

n2
eff

� 1=2

. (5.3)

A waveguide in the »weakly-guiding« limit would have n2
eff � " 3 and the solution becomes

plane-wave like, with a negligible longitudinal �eld component Ez. The effective index

of truly guided waveguide modes generally obeys the relation

maxf " 1, " 3g< n2
eff < " 2 (5.4)

in the case of lossless materials. If we use a high-index core material, the longitudinal

electric �eld component will gain enough strength to excite surface plasmons in pro-

pagation direction. This excitation scheme is signi�cantly different from a plane-wave

excitation and only possible in such a waveguide environment1. We choose Si3N4 with

" 2 = 4.0 for our test system due to its high permittivity and good transparency. From the

calculation displayed in Fig. 5.1 the required layer thickness is determined asd = 350 nm.

For this test system, the minimum �eld components ratio in the wavelength range of inte-

rest according to Eq. (5.3) is 0.72. The right side of Fig. 5.1 shows a to-scale comparison

between the different �eld components in the TM case, revealing that the Ez-component

has indeed a high magnitude at the cladding interface.

1The Ez(r, ! )-component could be provided by grazing incidence of a plane wave in TM polarization, but
only with wavenumbers insidethe light cone.
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Figure 5.2. A-FMM calculation of the waveguide-nanoparticle interaction. (left) Calculated transmission
in the TM0 waveguide mode for a single double cut-wire on top of the waveguide. The length L shifts the
plasmonic particle resonance spectrally. (right) The calculated �eld components at the resonance position
reveal a quadrupolar »dark« mode which shows an effective magnetic response.

Waveguide-Nanoparticle interaction. To test our assumption about the new excitation

scheme in TM polarization, we employ the nanoparticle geometry shown in the inset of

Fig. 5.2. This two-dimensional structure is known as cut-wire pair, a con�guration which

has been considerably studied in the metamaterial literature[285–288] . Two metal wires

are separated by a thin dielectric spacer. A suitable electric polarization along the wires

creates a fast-oscillating electric current which gives rise to a plasmon mode in each wire.

Depending on the thickness of the spacer, the evanescent �elds of the upper and lower

plasmon modes overlap, which causes a hybridization into a symmetric (dipolar charac-

teristic) or antisymmetric (quadrupolar characteristic) eigenmode of the entire structure.

The latter has the appealing property of creating an unusual response to the incident

light. Acting in a coil-like manner, it generates an effectivemagnetic response at optical

frequencies [289, 290] . Metamaterials or metasurfaces made of these structures have

been investigated in the line of the search for negative refraction[20, 215, 285, 291] .

For our purposes, the cut-wire pair geometry is an ideal test structure. We choose the

upper and lower wire as 20 nm gold, separated by a 40 nm thick dielectric spacer made

of MgO (" = 2.89).

We want to investigate the possibility to excite the antisymmetric resonance with the

longitudinal electric �eld component Ez and thus generate effective optical magnetism

in this waveguide environment. We use the s-FMM to simulate the modal re�ection and
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transmission. A considerable numerical challenge lies in the very small layer thicknesses,

which give rise to a large extent in the spatial frequency domain. Particular care has to be

taken in order to assure convergence of the calculation. Thex-direction has been sampled

using 214 � 1.6 � 104 sampling points, while the size of the computational window was

chosen as 5� 0. One must keep a high number of FOURIER harmonics in the calculation

in order to obtain an accurate result. For our case, the truncation order wasN = 125. In

Sec.3.2 we have already shown that an impedance framework can also be employed to

model this type of structures.

Fig. 5.2 shows the result for the transmission in the fundamental TM mode of the wa-

veguide for different lengths of the particle. One �nds the general trend that the trans-

mission decreases for decreasing wavelength. This can be explained by the off-resonant

scattering of the particle, which is expected to increase with decreasing wavelength[292] .

A resonant feature is also visible in the transmission spectrum, which changes its

spectral position with changing length of the particle. A nanostructure which is 40 nm

longer causes a spectral redshift of� 250 nm. The bandwidth of the feature is � 100 nm.

Both properties underline the plasmonic nature of the resonance.

The right side of Fig. 5.2 shows the calculated electromagnetic �eld at the resonance.

One �nds exactly the analytically predicted structure of Fig. 5.1 for the Ez-component

of the fundamental TM waveguide mode, which possesses its highest magnitude at the

interface where the nanoparticle is located. The off-resonant scattering, mainly towards

the substrate side, is also visible. The nanoparticle itself shows a strong enhancement

of the electromagnetic �eld in its close vicinity (sub-wavelength localization). The Ez-

component in the upper and lower gold layer are anti-parallel. This quadrupolar mode

does not enhance the scattering resonantly, since its symmetry limits the overlap to modes

propagating in free space. The dip in the spectrum is thus mainly caused by the resonantly

increased absorption in the lossy metal. The localized resonance emerges from the re-

petitive re�ection of the anti-parallel mode of the metal-insulator-metal structure at the

free termination. Its length as well as its modal dispersion determine the resonance fre-

quencies in full accordance with the description we developed to derive the resonances

of nanoantennas in Sec.4.1.1.

These calculations con�rm that it is possible to excite the anti-symmetric (»magnetic«)

resonance of a cut-wire pair in a waveguide geometry by exploiting the longitudinal elec-

tric �eld component. This promises interesting features when we switch from a single

structure to a regular lattice of structures, i. e. we want to investigate what happens if we

cover the waveguide by a metasurface made of cut-wire pairs.
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Figure 5.3. (left) Interaction scheme in the lattice con�guration. The photonic mode in the waveguide
hybridizes with the localized plasmonic modes in the particles to form a Waveguide Plasmon Polariton
state. The period p is the critical coupling parameter. (right) Calculated band diagram of the fundamental
TM0 BLOCH mode in the �rst band. Depending on p, different regimes of hybridization occur which show
extreme dispersion properties such as superluminality or negative group velocity. The calculated mode
�elds of the marked points are shown in Fig. 5.4.

5.2. Lattice con�guration: Waveguide-Plasmon-Polariton

We consider the con�guration shown on the left side of Fig. 5.3. The dielectric slab wa-

veguide is operated in its fundamental TM mode in the NIR wavelength range as before.

The characteristics of the excited localized resonance in the nanoparticle will critically

in�uence the properties of the B LOCH mode in the lattice con�guration with period p.

For a simple plasmonic wire structure, the excitation of an oscillating dipole mode is

most prominent and has been demonstrated experimentally[293–302] . However, a di-

polar mode has the disadvantage of high radiative loss in the system due to a continuous

out-coupling of energy into far-�eld radiation. Hybrid modes in such systems will thus

generically be of leaky character[303] . This problem is solved by the cut-wire geome-

try. The last section has proven that it is possible to excite its »dark« resonance from the

waveguide's fundamental TM mode. We are now going to investigate the propagation

properties of a lattice of these nanostructures on the waveguide.

Waveguide-Plasmon-Polariton. Structures of this kind (nanostructure lattices on top of

a waveguiding layer) have been investigated in the literature earlier under the term

»metallo-dielectric photonic crystal«. The hybridized state has been given the name

»Waveguide-Plasmon-Polariton« (WPP)[304–314] . However, the focus of these inves-
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tigations was a regime where the con�guration was illuminated by a plane wave from

free-space. Consequently, the authors used a second-order BRAGGgrating where the pe-

riod is equal to the wavelength divided by the effective index of the waveguide. When

we recall the considerations for the antenna grating in Sec.4.2.1, we see that this results

in a coupling between three modes, since the WPP state is in the light cone and acts with

normally incident light at the center of the B RILLOUIN zone. The interaction of locali-

zed modes with the continuum of radiation modes has been shown to produce a FANO

resonance in the transmission spectrum with an asymmetric line shape[315] .

In contrast, we are targeting here for an operation regime of a truly guided, resonant

WPP stateoutside the light cone and make use of a �rst order BRAGG grating, where

the period is half of the wavelength in the medium. While former investigations were

conducted from the viewpoint of photonic crystals with metallic resonators, we want to

employ the viewpoint of integrated optics with plasmonic nanostructures / metasurfaces

here [316, 317] .

Dispersion of the fundamental Bloch mode. When switching from a single nanostruc-

ture to a lattice with period p, the most important question is if this con�guration has a

truly guided mode. Due to the periodicity in propagation direction z, modes in the struc-

ture are of pseudo-periodic BLOCH type with a pseudo-wavenumber � b, as has been ex-

plained in Sec.2.1.2. We �x the length of each individual particle to be L = 220 nm. The

minimum of the waveguide transmission for the single particle scattering in Fig. 5.2 for

this length is marked with an asterisk. Its frequency is! ff = 2� �210 THz (� 0 = 1430nm),

which can be called the »far-�eld« resonance frequency.

We now investigated lattice periods p between 290 nm and 470 nm with our a-FMM

code. The analysis indeed reveals the existence of a truly guided mode in the �rst band of

the system, where� 0
b lies under the substrate light line. The right side of Fig. 5.3 shows

its calculated band diagram � b(! ) for different values of the lattice period p.

In the case of a dense lattice,i. e. for small values of the period, the dispersion charac-

teristics follows the photonic mode of the dielectric waveguide, despite the occurrence of

a resonant feature at! plas = 2� � 217 THz (� 0 = 1382nm). It is blue-shifted with respect

to the far-�eld resonance ! plas > ! ff , a phenomenon which is well-known for nanoscale

scatterers with multipolar resonance characteristics[318] . An investigation of � 00
b reveals

a Lorentzian instead of a FANO lineshape [319, 320] , which was found earlier in plane-

wave studies of metallo-dielectric photonic crystals[315] . This underlines that the modal
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interference mechanism in the waveguide environment is different from the plane-wave

excitation case and depends on the speci�c eigenmode coupling rather than the mere

existence of »bright« and »dark« modes[320] . The frequency of the BRAGG resonance,

which determines the spectral position of the band gap! bg = c=neff � �= p, is higher than

the resonance frequency of the plasmonic nanoparticles! plas < ! bg in this dense lattice

case, so that the effects occur in the fundamental band of the BLOCH periodic structure.

The situation changes, when the period of the lattice is increased, so that the plasmonic

resonance comes closer to the band edge! plas ® ! bg. A redshift of the resonant feature

indicates a strong interaction regime. The dispersion shows an increasing backbending

until d != d� 0
b diverges, i. e. a superluminal regime [321] . One has to keep in mind that

the group velocity in lossy, periodically structured media vg = d!= d� becomes a complex

quantity since � is complex. CHEN et al. [ 192] have shown, how the group velocity needs

to be interpreted in terms of the adjoint modal formalism. It is generalized to a »adjoint

�eld velocity«, which is the ratio of an adjoint �ux and an adjoint �eld density. The latter

two quantities are the generalization of the POYNTING �ux and energy density for the case

of lossy media. When interpreted in this way, the quantity v0
g still yields the velocity of

the time-domain peak of a Gaussian pulse, even in the case of superluminality, which has

been proven experimentally [322, 323] . A pulse which travels through such a medium

undergoes a signi�cant reshaping of the temporal envelop, which is associated tov00
g

[ 324] . This underlines that the usage of the adjoint modal formalism as generalization for

lossy structures is of utmost importance for the interpretation of these complex photonic

systems.

In the region where the bandgap and the plasmonic particle resonance overlap spectrally,

even a negative group velocityv0
g < 0 is reached (»backward wave«). This unusual effect,

where the peak of a Gaussian pulse appears at the backside of a structure before the pulse

has even entered it, was much debated or even regarded unphysical, until it was experi-

mentally proven [322, 323, 325] . Our systems can be seen in some analogy to previous

studies on coupled-resonator optical waveguides, which also predicted the occurrence

of a negative group velocity when in the inter-resonator coupling is thoroughly tuned

[326] . Periodic structures that include materials with anomalous dispersion have also

been shown so exhibit such states with in�nite group velocity points or »dispersion bub-

bles«[327–329] .

In our system, the behavior can be understood by the characteristic of the fundamen-

tal BLOCH mode. The localized resonances of the individual nanostructures are coupled
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(1)
resonant
detuned

(2)
resonant
in-phase

(3)
off-resonant

Figure 5.4. Hy �eld component for the TM 0

BLOCH mode in the lattice con�guration cal-
culated by the a-FMM. The three scenarios
correspond to the three marked positions in
the band diagram Fig. 5.3. (1) Spectral posi-
tion of the plasmonic resonance in the case
of a dense lattice. Although some structu-
res are excited, neighboring structures are de-
tuned in excitation. (2) Phase-matched case
at a spectral position of negative group velo-
city. The magnetic response of all structures
is phase-matched. (3) Off-resonant position
in the spectrum. The mode behaves as the
ordinary slab waveguide mode.

by the photonic mode. This interaction channel is phase dependent and differs funda-

mentally from the coupling of nanostructures via near-�eld interaction. The excitation

between two neighboring resonators happens with a phase difference� ' = neff � k0 � p

and can by itself become resonant when it reaches� , i. e. close to the band edge. The

plasmonic resonances of all nanoparticles will be in-phase here, which leads to a further

increase in the resonant �eld strength. The backbending of the dispersion relation is a

sign of the unusual behavior of the BLOCH mode in this regime which can be viewed as a

resonant excitation of antisymmetric plasmonic resonances. The POYNTING vector in the

near-�eld does not point into the forward direction everywhere. The Lorentzian shape of

� 00
b in the dense lattice case gets altered towards a parabolic shape, which is characteristic

for states within the band gap.

Electromagnetic �elds of the fundamental Bloch mode. The investigation of the calcu-

lated electromagnetic �elds of the fundemantal B LOCH mode reveals interesting physical

insight into the resonant excitation process. Fig. 5.4(1) shows a time snapshot at the

frequency ! plas for the dense lattice case. The �eld within the Si3N4 resembles the �eld

of the unstructured dielectric waveguide. Although the localized plasmon mode is ex-

cited in the nanostructures, neighboring particles are phase-mismatched in excitation.

This results in a lower overall excitation strength which can consequently not ef�ciently

in�uence the propagation properties of the hybrid B LOCH mode.

In contrast, Fig. 5.4(2) shows the same �elds in the strong coupling regime, where the
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Figure 5.5. (left) SEM image of the fabricated sample for the SNOM experiment. (right) SNOM signal for
the »detuned« (1) and the »in-phase« (2) case of Fig.5.4.

backbending of the dispersion takes place. Neighboring particles are phase-matched in

excitation now, leading to a »phase-coupled« resonant excitation of the individual plas-

monic resonances. In the off-resonant case (3), however, the waveguide acts much as if

the nanoparticles were not there at all.

Effective parameters. Since the analysis revealed just a single guided BLOCH mode, one

may regard the lattice of nanostructures as an effective metasurface and the whole struc-

ture as a »metawaveguide«. It can be described by the fundamental BLOCH mode's ef-

fective index neff = � b=k0 and a modal impedanceZb with respect to the dielectric waveg-

uide as already shown in ChapterIII . However, one must keep in mind that the reduction

of the optical properties to one predominant mode, the Fundamental BLOCH Mode Ap-

proximation, is a necessary prerequisite for this. Other interaction scenarios of similar

»nanoparticle-on-waveguide systems« might better be described as antennas coupled to

waveguides, since they lack a truly bound state and a continuum of leaky states does not

allow for a meaningful simpli�cation to a small number of effective parameters.

Experimental demonstration. We fabricated lattices of cut-wire pairs on top of a Si3N4

slab waveguide, as described above. The structure is shown on the left side of Fig.5.5.

A tunable laser source (Santech TSL 1260 nm - 1620 nm) was used to generate an el-

liptical focus, which was coupled into the fundamental TM waveguide mode. The light

propagated to the nanostructured region with low lateral divergence. This resembles the

situation we analyzed in theory above. In the nanostructured region, the light is propa-
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gating in the fundamental BLOCH mode. We mapped the electromagnetic �eld from the

top using a SNOM in collection-mode with a dielectric tapered �ber tip.

We are interested in the �eld patterns at resonance for the »detuned« case (1) in

Figs. 5.3 and 5.4, as well as the »in-phase« case (2). They are shown on the right side

of Fig. 5.5. We excluded the region at the beginning of the nanostructured area for our

comparison to eliminate transient effects between the structured and the unstructured

region, since we are interested in the BLOCH mode properties.

In the detuned case, we witness a strong increase of the SNOM signal, but only at a

speci�c position in the lattice. The nanostructures show a high excitation strength there,

but other nanostructures are not excited, although the laser operates at their individual

resonance frequency. This picture changes in the tuned case. The excitation strength rea-

ches the same maximum value, however, many nanostructures everywhere in the lattice

are now excited.

This behavior is in agreement with our theory above. In the �rst case, the phase mis-

match between neighboring particles leads to a detuning of the resonant coupling bet-

ween the nanoparticles in propagation direction. Consequently, only few nanostructures

appear excited at the same time. In the second case, the phase mismatch between the par-

ticles is eliminated, leading to a resonant interaction as explained in the previous section.

All particles appear to be excited at the same time.

Application perspectives. Plasmonic nanostructures are widely used for chemical sen-

sing. The �eld enhancement at resonance can increase the signal contrast due to a stron-

ger interaction with the analyte [330, 331] . This can boost the sensitivity even down

to the single-molecule level. In a waveguide environment, ultra-compact lab-on-a-chip

systems become possible. Existing schemes for integrated spectroscopy suffered from

the low overlap of the waveguide mode, usually in a high-index semiconductor, and the

analyte on top, which is usually in watery solution [332, 333] .

At this point, the plasmonic nanostructures we have investigated can help increasing

the light overlap with the analyte and at the same time enhance the electromagnetic �eld.

The left side of Fig. 5.6 shows the experimental results, when we scan over an excited

particle in the vertical direction. We detect an exponential signal increase with a 1=e

localization length of 170 nm. With this increased �eld, particles in very close vicinity

of the nanostructure can be spectroscopically detected in the far �eld by measuring the

waveguide fundamental mode transmission.
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Figure 5.6. (left) The SNOM approach curve to the nanoparticle reveals a sub-wavelength light localization
of 170 nm. (right) Signal contrast enhancement by the nanoparticle for integrated absorption spectroscopy.
The highest enhancement does spectrally not coincide with the lowest far-�eld transmission.

We investigate this mechanism further by including an arti�cial analyte in our a-FMM

simulation, which has a Lorentzian absorption peak within the bandwidth of the plas-

monic resonance. We compare the far-�eld waveguide mode transmission without na-

nostructure and with nanostructure on top on the right side of Fig. 5.6 and plot the

waveguide mode transmissionwithout analyte for comparison. We see that the presence

of the particle increases the signal contrast in the spectral region of the plasmonic re-

sonance. However, the maximum enhancement of� 60 % does spectrally not coincide

with the minimum in transmission, but occurs at the spectral position of maximum �eld

strength in the near-�eld. This can be attributed to the spectral shift between near-and

far-�eld resonance [318] as well as the underlying FANO resonance mechanism[315,

319] in the system [334] . In this manner, ultra-sensitive spectroscopy becomes possible

at high transmission levels with this scheme.

A second perspective for applications lies in dispersion engineering. The waveguide en-

vironment has been shown to provide a unique coupling scheme for the localized modes

of plasmonic nanoparticles which can vice versa create unexpected propagation proper-

ties of the hybridized structure.

The system is an interesting class of structures for dispersion engineering in wavegui-

des by modal tuning, although most studies focus on the creation of »slow-light« devices

which enhance light-matter-interactions. The combination with plasmonic elements en-

riches the possibilities of enhancement mechanisms and allows the creation of complex

light states [329, 335] . The occurrence of an in�ection point in the dispersion relation

can have a bene�cial effect on the modal coupling properties [336–340] .

Phase-coupling via a photonic mode of the waveguide can in principle be much stron-
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ger than near-�eld coupling since it is not intrinsically limited in range. It can make

particles interact coherently over a whole lattice while near-�eld coupling is limited to

nearest-neighbor interactions. The system is attractive for exploiting coherent effects like

electromagnetically induced transparency in integrated optics [341–344] .

By adding plasmonic nanostructures to the cladding of a waveguide, it becomes possi-

ble to tailor the relevant dispersion parameters over a large range. Dispersion-engineered

integrated optical devices may emerge from such an ansatz which could �nd use in optical

communication or integrated quantum optical technologies. As for many plasmonic ap-

plications, the high metal loss is a problem and might be solved by switching to dielectric

metasurfaces of the »Huygens-type«[345–347] .

However, the platform of waveguides modi�ed by metasurfaces awaits further explo-

ration in the future. The occurring phenomena like negative group velocity, electromag-

netically induced transparancy or FANO resonances require an involved theoretical and

numerical apparatus to be exploited for applications. We have shown here that using the

adjoint modal formalism for computation and theory will play an important role along

that way.
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At the beginning of the thesis, we started with the question how one can employ a fra-

mework for the analysis and design of nanooptical structures that gives maximum in-

sight into the underlying physics. The art of rigorous numerical computing has made a

dramatical development throughout the last years and found an established place in na-

nooptics. Commercial programs are available which perform a »numerical experiment«,

irrespective if the operator understands how the program works, which prerequisits it

has, or which mathematical assumptions it makes. While this greatly eases the possi-

bilities for optimization of a certain structure design, it leaves almost no insight how

a physical model of the structure may look like and what the relevant parameters are.

Computers cannot (yet) understanda structure and come up with entirely new designs

based onideasand models. Gravitational waves were not postulated by a computer that

solved the non-linear �eld equations of general relativity rigorously, but by a genius who

saw that these equations contain a linearized wave solution as low order expansion term

[348] .

Modal decomposition of the HELMHOLTZequation is a natural choice for such a frame-

work and has widely been applied for RF engineering, laser resonator design, or optical

�bers in the past. However, the methodology taught by the standard textbooks in the

�eld strictly holds only for losslessstructures. The reason is simple: Nobody wants loss in

optical structures, so one better uses lossless materials. There was no practical need to

consider dissipation beyond a level which can be treated perturbatively. In plasmonics,

where noble metals are used at optical frequencies, this is not possible anymore. Material

loss is an inevitable companion when designing functional plasmonic structures.

To tackle this problem, we went back to a basic relation contained in MAXWELL's equa-

tions: reciprocity. While »the« reciprocity theorem is usually formulated using the time-

averaged POYNTING �ux density hS(r)i and energy densityhU(r)i , it is not well-re�ected

in the literature that this just works when the system is entirely free of dissipation. Only

for this case the HELMHOLTZ operator is Hermitian with the consequence that its eigen-
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functions form a complete orthonormal basis. These properties are destroyed by the

presence of loss.

However, we could restore them by switching to an alternative formulation of recipro-

city which is complex valued in general and not related to energy considerations. The

»adjoint formulation« makes use of the biorthogonality relation which exists between the

eigenfunctions of the non-selfadjoint operator Ĥ and Ĥ†. They are linked to the forward

and backward modes of the system. The span of all modes in one direction, which was a

orthonormal complete set in the lossless case, is now only biorthogonal complete with its

adjoint counterpart. However, the mathematical framework stays fully intact, albeit with

unusual consequences (modes are orthogonal on themselves). The POYNTING �ux den-

sity S(r) is replaced by the »adjoint density«F(r), which is preserved during propagation

also in the dissipative case.

The calculation of the modes themselves is a task where numerical computational sup-

port is indispensable. From the several numerical methods at hand we chose to imple-

ment the aperiodic Fourier Modal Method (a-FMM) because it allowed the calculation of

the modes relevant for this thesis on the one hand, but provided also a means to compare

our models to rigorously calculated re�ection and transmission data. Since we investi-

gated exclusively waveguiding structures in the thesis, the usage of anisotropic Perfectly

Matched Layers was necessary. The use of FOURIER series for these kind of structures

requires to keep a high number or FOURIER harmonics in the calculation in order to be

accurate. For future works, one may thus think of a numerical method which uses a diffe-

rent technique to calculate the modes,e. g. by the Finite Element Method, and keeps the

scattering matrix approach of the FMM based on the adjoint mode �elds, i. e. a »Finite

Element Adjoint Modal Method«. This would signi�cantly improve the work�ow of the

adjoint modal analysis.

In the thesis, we have entirely concentrated on the formulation of the HELMHOLTZ

problem with a complex eigenvalue � 2(! ) and ! as a real parameter. Future works

should also explore the implications of the formulation with a complex ! 2, which is

well suited to model the temporal behavior of localized resonators. One could combine

these with the spatial multipole expansion to better understand the ultrafast resonance

behavior of these structures.

The central goal of making a physical model for complicated structures is to describe

them by simple parameters, preferably in the same way as one describes homogeneous

media. Much of the homogenization debate for metamaterials was about how to obtain
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and interpret the »negative refractive index«. The solution was that the effective index

of a particular BLOCH mode plays that role when only this one is predominantly excited.

This was called the Fundamental Mode Approximation (FMA) and led to the concept of

»BLOCH lattices« with »BLOCH material parameters«. Among them is also the impedance

which describes the coupling of a structure with its surrounding. We investigated how an

impedance de�nition may look like based on the adjoint mode formalism. Our central

requirement was that the impedance would reproduce the complex re�ection coef�cient

from an interface of discontinuity between two structures. It turned out that the intro-

duction of a scalar impedance is directly linked to the validity of the FMA. We derived a

master equation for the adjoint impedance ratio of a structure under consideration and a

reference structure. The modal contributions are entangled in the integral and not sepa-

rable in the general case. When there are additional modal symmetries present or when

a modal reference frame with high symmetry is used, however, the expression allows for

a signi�cant simpli�cation. In this way absoluteimpedance de�nitions become possible.

We were able to show that our master equation in that way reproduces the expressions for

genuinely homogeneous media, waveguides in the radio frequency range (such as coaxial

wires) and the BLOCH impedance of homogenizeable metamaterials. It thus represents

a natural generalization of the impedance which is valid all the way from electronics to

plasmonics. Especiallytransversality in conjunction with invariance in propagation di-

rection was shown to be a key feature which allowed to derive a generalization of the

classical tangential impedances. Remarkably, the difference just occurs in TM polariza-

tion in the form of the adjoint-mode-averaged impermittivity


" � 1

�
. This explains many

of the dif�culties which occurred especially in plasmonics, since the whole �eld is based

on TM polarized modal solutions. However one must always keep in mind that also an

absolutevalue for the impedance of a certain structure is just valid with respect to the

reference frame. The impedance of a nanoantenna with respect to free space will hardly

have the same value as the impedance of the same nanoantenna with respect to an optical

feed waveguide.

From our investigations we can now give a full systematic of the generalization of

model paramters based on the adjoint modal framework. It is shown in Tab. A.1 in ap-

pendix A3.

There are a couple of structures which are at the heart of nanooptics: nanoantennas for

light, plasmonic waveguides, grating structures and lattices of plasmonic elements, so cal-

led »metasurfaces«. Therefore, we demonstrated our impedance formalism successfully
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for two examples: a grating re�ector for a Surface Plasmon Polariton (SPP) waveguide

and a dielectric waveguide covered by a metasurface of double cut-wire pairs, which also

played a role in ChaptersIV and V.

Further investigations should attempt to investigate more symmetry groups of structu-

res, especially in 3D. Examples can include chiral structures or structures with an effective

anisotropy. Since our general formula for the adjoint impedance ratio is valid irrespective

of the modal symmetry, it is a good starting point from which one can explore the possi-

bilities of �nding impedance expression for these cases.

In Chapter IV, we investigate how the impedance mismatch of a �nite sized waveguide

leads to a localized antenna resonance when the coupling between the adjoint mode pair

is phase matched. This led to a Fabry-Pérot-type round-trip model based on adjoint mo-

dal parameters and allowed the identi�cation of a tuning strategy. The evanescent BLOCH

mode of an SPP grating was used to increase the feedback from the antenna termination.

We used the second BRAGG resonance in order to allow also an increased coupling to

normally incident radiation, the »disc-ring antenna«. While we performed our theore-

tical investigations on plane SPP gratings, we experimentally realized a concentric ver-

sion. Conceptually it differs only in the detail that the radial mode function is not a plane

wave any more but a slightly more complicated HANKEL function which has deviating

near-�eld terms close to the origin. The dispersion relation, however, remains unaltered.

The adjoint mode pair is given by the inward and outward-propagating H ANKEL Surface

Plasmon Polaritons (HSPP). We experimentally investigated the theoretical predictions by

Scanning Near-�eld Optical Microscopy (SNOM) and multiphoton Photoemission Elec-

tron Microscopy (n-PEEM). Especially for the latter we had to develop a model for the

spatial distribution of the nonlinear electron yield, which we think is not attributed to

the »intensityn-model«, but rather a time-domain formula which accounts for the repe-

titive linear dipole-�eld interactions based on FERMI's golden rule. This was necessary

because we used a ultrafast 30 fs laser source which required substantial spatio-temporal

modeling of the process. The results of the experiments are in very good agreement with

the analytical modal considerations.

Future works can use much more sophisticated approaches to realize a modal tuning

of antenna geometries. In the �eld of n-PEEM, more experiments are necessary to clarify

the speci�c details of the yield model.

In Chapter V, we investigated the coupling between a dielectric waveguide and plasmo-

nic nanostructures placed on top of it. We used the double cut-wire geometry to explore
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the possibility of exciting a »dark« mode with quadrupolar character. The speci�c pola-

rization properties of the fundamental TM waveguide mode made it possible to excite

the structure with the longitudinal component of the electric �eld. The system which

is composed of the dielectric waveguide and a periodic lattice of these structures (me-

tasurface) on top shows interesting dispersion properties. Close to the band edge, the

adjoint mode pair of waveguide modes gets coupled and hybridizes with the localized

plasmonic resonance into a Waveguide Plasmon Polariton state. The group velocity,i. e.

d!= d� 0, gets superluminal and even negative in the spectral region of the hybridization

(backward wave). This needs to be understood in terms of the adjoint �eld velocity that

was introduced based on the adjoint modal formalism earlier. The system thus repre-

sents an interesting platform to realize extreme light properties in an relatively easy to

fabricate waveguide environment.

Another application lies in integrated absorption spectroscopy, when an analyte with

a spectral absorption peak is placed on top of a waveguide and the transmission in the

fundamental waveguide mode is measured. If one compares the signal contrast per unit

length for the case with and without nanostructures on top, we have shown that a � 60 %

increase is possible at the spectral position of the highest near-�eld enhancement. The

possibilities for a practical use of the system for dispersion engineering or spectroscopy

are still largely unexplored and can be subject of further studies.

If we summarize the content of the whole thesis, we must �rst note that the adjoint

modal formalism should become a textbook knowledge for any physicist dealing with

lossy plasmonic structures since it resolves many uncertainties and mysteries about effects

such as negative refraction, perfect lensing, superluminality or backward waves. The

generalization of model quantities such as the refractive index or the impedance allows

to treat sophisticated dissipative structures in the fashion of engineer's formulas. This

way leads to a much clearer understanding of the analysis and design process of future

functional nanooptical structures.
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A. Appendix

A1. Derivation of the modi�ed Gauss' theorem for

electromagnetic modes.

We start with a vector function A and de�ne a �nite volume V in which A is well-behaved

(integrable). GAUSS' theorem relates the volume integral over the divergence ofA to a

closed surface integral of second kind[232]

�

V
r � AdV =

�

@V
AdS. (A-1)

As integration volume we specify a cylinder with radius Rand the cylinder axis parallel to

the z-direction (between z1 and z2). We split the surface integral into contribution from

the three different surfaces and their outward pointing surface normals, which yields

using cylindrical coordinates [232]

�

@V
AdS=

� 2�

0

� R

0
A(r, ' , z2) � ez r dr d' �

� 2�

0

� R

0
A(r, ' , z1) � ez r dr d'

+

� z2

z1

� 2�

0
A(R, ' , z) � er Rd' dz. (A-2)

We will now make a transition z2 ! z1, R ! 1 , while V stays constant. The important

part is the behavior of the last term. In the light of L ORENTZ' reciprocity theorem, A has

the meaning of a bilinear form on the electromagnetic modes. For bound modes, the last

term in Eq. (A-2) vanishes since the electromagnetic �elds must be square-integrable.A

will consequently vanish at in�nity. More delicate are radiative and leaky modes, since

they formally carry an in�nite amount of energy and A does not vanish on the outer

boundary. However, one has to reconsider the �niteness of the volume while reaching

the limit. As long as A stays integrable within any �nite volume, the cladding term will

vanish in the limiting case of a vanishing boundary at in�nity, even if A doesnot vanish
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on this boundary itself. Integrability over a �nite volume applies to any electromagnetic

radiation (square integrable within a �nite volume). With this argumentation we can

state with con�dence that the last term in Eq. ( A-2) will vanish for any electromagnetic

mode, may it be bound, evanescent, radiative or leaky.

The next step is to understand the volume integral in Eq. (A-2) as the variation of a

(now non-closed!) surface integral along the z-direction

2

4
�

( x,y)2R2

r � AdS

3

5 � z = �

2

4
�

( x,y)2R2

A � ez dS

3

5 . (A-3)

We can therefore deduce the �nal result

�

( x,y)2R2

r � AdS =
@
@z

2

4
�

( x,y)2R2

A � ez dS

3

5 . (A-4)

A2. Adjoint impedance ratio of a SPP-grating interface

Here, we want to �nd the explicit expression for the relative impedance of a SPP-to-

grating interface to illustrate our �ndings in Sec. 3.2.

An SPP mode has a simple �eld dependence. In the coordinate system used throug-

hout this thesis, only the Hy-component is non-zero, compare Sec.2.1.2. The general

expression for the relative impedance Eq. (3.23) simpli�es to

Z
Zref

=

�
Ex( x, z0) � H ref

y ( x, z0) dx
�

Eref
x ( x, z0) � Hy( x, z0) dx

. (A-5)

We can expressEx( x) by Hy( x) in homogeneous and source-free regions of the geometry

using MAXWELL's equations. This yields

Ex( x, z0) = � i
Z0

k0" ( x)
�

@Hy( x, z)

@z

�
�
�
�
z0

. (A-6)

The interesting feature is the different mathematical structure of the modal solutions on

both half-spaces. The reference mode (simple SPP) is az-invariant solution and yet of
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the form

H ref
y ( x, z) = ( some mode function of x) � exp(i � refz) (A-7)

= � ( x) � exp(i � refz). (A-8)

The mode in the grating region is a BLOCH mode. It has the form

Hy( x, z) =

‚
some BLOCH mode function of ( x, z);

periodic in z; usually not separable

Œ

� exp(i � z) (A-9)

=  ( x, z) � exp(i � z). (A-10)

This effects directly the derivative with respect to z and generates an additional term for

the BLOCH mode. We �nd

Eref
x ( x, z0) =

� refZ0

k0" ref( x)
� H ref

y ( x, z0) = nref
eff

Z0

" ref( x)
� � ( x) � exp(i � refz) (A-11)

=
Z0

" ( x)

�

neff  ( x, z0) �
i

k0

@  (x, z)

@z

�
�
�
�
z0

�

exp(i � z0). (A-12)

Note that a dependence on the cutting-plane positionz0 of the BLOCH mode enters the

equation – a problem well known in Photonic Crystal literature, since their description is

entirely based on the discussion of BLOCH modes.

If we insert our �ndings into Eq. ( A-5), we �nd

Z
Zref

=
neff

nref
eff

�

�
1

" ( x, z0)
� � ( x) �  ( x, z0) dx

�
1

" ref( x)
� � ( x) �  ( x, z0) dx

�
i

nref
eff � k0

�

�
1

" ( x, z0)
� � ( x) �

@  (x, z)

@z

�
�
�
�
z0

dx

�
1

" ref( x)
� � ( x) �  ( x, z0) dx

(A-13)

=
neff

nref
eff

�



" � 1( x, z0)

�
� 



" � 1

ref ( x)
�

� 

�
i

nref
eff � k0

�



" � 1( x, z0)

�
� @  

@z

" � 1

ref ( x)
�
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(A-14)

=
neff

nref
eff

�
•
1 �

i
neff � k0

� F z0

•
� ,  ,

@  

@z

‹˜
. (A-15)

The term


" � 1

�
f g

is an abbreviation for tangential averaging of the impermittivity with

the product f � g as (complex valued!) weight function. The last step was only possible
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because" ref( x) and " ( x, z0) are identical at the interface for this special geometry. F z0
is a

functional which contains the mode �eld functions and their derivative and characterizes

the coupling as a measure of entanglement between the two modal systems. This outlines

the importance of the choice of the cutting plane z0, which is in the middle between two

corrugations. The interface scattering parameters – most importantly the re�ection in our

case – need to be evaluated with respect to that plane. A discussion of the implications

of this formula is given at the end of Sec.3.2 where this geometry is investigated.

A3. Summary of adjoint modal generalizations of important

quantities

The following table summarizes the adjoint modal generalizations of the most important

photonic quantities under the Fundamental Mode Approximation (FMA), as they are used

in this thesis. The role of the effective index neff(! ) as a refractive index, especially in

the case of a homogenizable metamaterial, is comprehensively discussed in[29, 31–34,

181] . The adjoint modal generalization of the impedance was introduced in [TK2013]

and is the main result of Chapter III . The special case of a plane wave reference frame

and a violation of the FMA, as it is common for photonic crystals, leads to the matrix

impedances introduced by LAWRENCEand co-workers [36–38] . The adjoint �eld velocity

is especially discussed in[192, 329] .

103



A
A

ppendix

lossless homogeneous quantity adjoint modal generalization notes

time-averaged POYNTING �ux density
hS(r)i T = 1

4 � [E � H� + E� � H]
adjoint �ux density

F(r) = 1
4 �

�
E � H† � E† � H

�
adjoint �ux is preserved during propagation also
for dissipative systems

energy density

U(r) = 1
4 �

”
d("! )

! jEj2 + jHj2
— adjoint �eld density

N(r) = 1
4 �

”
d("! )

! EE† � HH†
—

N(r) as well asF(r) loose connection to energy
considerations

refractive index
n(! ) = " 1=2(! )

effective index
neff(! ) = � (! )

k0

n0
eff(! ) < 0 ) negative refraction

impedance
Z(! ) = Z0

" 1=2(! )

adjoint impedance ratio
Z(! )

Zref(! ) =
�

(E†
ref � Eref) � H� E� (H†

ref � Href) �ez dS
�

(E†
ref+ Eref) � H� E� (H†

ref+ Href) �ez dS

master equation, contributions entangled, no
absolute de�nition possible

tangential impedance
Z? (! ) = Z0

neff(! ) (TE)

Z? (! ) = Z0
" (! ) � neff(! ) (TM)

transverse adjoint modal impedance
Z? (! ) = Z0

neff(! ) (TE)

Z? (! ) = Z0 � neff(! ) �


" � 1(! )

�
� 

(TM)

z-invariance and transversality required,
h�i� means tangential averaging with a weight
function (Hx Href

x + Hy Href
y )

BLOCH impedance (metamaterialsa)
ZB(! ) = hEx i uc

hHy i uc

(TE)

ZB(! ) =
hEy i uc

hHx i uc
(TM)

periodicity and plane waves as reference requi-
red
h�iuc means tangential averaging over the unit
cell

phase velocity
vp(! ) = c

n(! )

v0
p(! ) = !

� 0(! ) = c
n0

eff(! )

phase and group velocity can both be negative
or antiparallel in the case of negative refraction

group velocity
vg(! ) = d!

d� (! )
energy velocity

ve(! ) = hS(r)�ez i uc

hU(r)i uc
= vg

adjoint �eld velocity
va(! ) = d!

d� (! ) = p � hF(r)�ez i uc

hN(r)i uc

v0
a(! ) describes the propagation velocity of

Gaussian pulse peak, also whenv0
a(! ) > c

Table A.1. Adjoint �eld quantities which characterize nanophotonic structures in the Fundamental mode approximation case. Materials are assumed
non-magnetic (� = 1). Every quantity which is not explicitly speci�ed depends on r and ! .

aThe FMA does often not hold for Photonic Crystals. A matrix version of the BLOCH impedance must be used[36–38] .
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