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 Introduction 1.
Electromagnetic waves are intrinsically spatiotemporal phenomena [Lan60, Lan75, Jac06]. Their 

propagation in space and time is a so-called 3+1 dimensional problem. An electromagnetic field, 

which is known on a three dimensional hyperplane of space-time, is defined in all of space-time, 

except for regions that are inaccessible for reasons of causality. This is due to the propagating 

nature of electromagnetic fields. Mathematically this propagation is described by Maxwell’s 

equations. These differential equations relate the electromagnetic field on the hyperplane to an 

infinite series of neighboring planes, eventually filling space-time. The series of hyperplanes is 

parameterized by a single coordinate, the propagation coordinate, whereas the three coordinates, 

that span each hyperplane are called transverse coordinates. The propagation equations are in 

general nonlinear, due to the nonlinear response of optical materials to highly intensive 

electromagnetic fields. 

One approach to describe electromagnetic fields in experiments is as follows. For each position 𝑧 

on an optical axis a field must be defined on the spatiotemporal subspace, consisting of the 

transverse spatial coordinates 𝑥 and 𝑦, and along the time axis, with the coordinate 𝑡. This 

approach is useful if a directional flow of energy from a source, through an experiment, to a 

measurement point is defined. As all experiments in this thesis share this layout, we thus adopt 

this terminology. 

Nevertheless, neither textbook optics [Sny83, Sal91, Bor99, Agr01, Boy03, Jac06], nor 

photonics research often deal with 3+1 dimensional nonlinear, spatiotemporal wave physics. 

Most areas of research are concerned with phenomena, which fall into either of the three classes 

of spatial optics, temporal optics, or nonlinear optics. Discounting of nonlinearity is common for 

moderately intense electromagnetic fields. The reduction of the spatial or temporal transverse 

coordinate is facilitated by the usage of sufficient boundary or initial conditions, wave 

confinement and/or symmetry. An example of the former is classical imaging optics [Bor99]. It 

largely ignores the temporal variation of the electromagnetic field, assuming either incoherent or 

monochromatic illumination. Guided wave photonics [Sny83] is an example of the latter 

technique. Here the field travels in a discrete set of transversally confined, linearily orthogonal 

modes. All dynamics can then be understood in terms of mode beating and mode perturbation. 

The tremendous progress that photonics and its ubiquitous applications in science and 

technology have made in the last decades is often based on such subspace approaches. In this 

sense the advances that have lead researchers to proclaim the “century of the photon” [Goo11] 

have been derived from a just a small subset of photonics as a whole.  
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If the limits of these classes of research are left behind new optical effects immediately arise. 

Research, which deals with either pair of the three main classes has led to the discovery of many 

new effects and concepts in photonics, as can be seen from Fig. 1. A straightforward 

consequence is that research in nonlinear, spatiotemporal photonics, i.e. in a combination of all 

three classes of research, will immediately bring forward new results. The endeavor of advancing 

nonlinear, spatiotemporal optics, pursued in this thesis, is therefore worth the effort, as it strives 

to “unleash” photonics from the restriction of reduced dimensionality.  

 
Fig. 1: The location of spatiotemporal, nonlinear optics, at the intersection of the important 
classes of photonics research: spatial, temporal and nonlinear optics. Effects and concepts that 
arise due to the interplay of either pair of the three are noted in their cross section areas. 
Spatiotemporal, nonlinear optics is linked to all three and thus particularly rich. 

The generalization to spatiotemporal optics, however, comes for a prize. All steps required for a 

successful experiment, i.e. spatiotemporal pulse generation and analysis techniques as well as 

spatiotemporal numerical modelling and sample fabrication need to be carefully reviewed or 

newly developed. In this thesis we have made significant advances in the all fields related to 

spatiotemporal optical experiments, which allowed us to produce novel results in nonlinear, 

spatiotemporal optics. More specifically we have adopted and developed methods for 

spatiotemporal pulse generation and spatiotemporal pulse analysis. We also investigated various 

classes of propagation environments with respect to their suitability for nonlinear, spatiotemporal 

optics and introduced qualitative as well as quantitative modelling techniques. 

As can be seen in Fig. 2 the development of these methods and samples, however, was not an 

end in itself. Instead it was driven by the quest for the experimental observation of a truly 

spatiotemporal, nonlinear entity – a solitary wavepacket, which is nonlinearly self-confined 

along all transverse dimensions simultaneously. This so-called Light Bullet had been the subject 

of intensive theoretical research since the seminal work by Silberberg [Sil90] but eluded clear 
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experimental observation prior to this thesis [Min10a]. 

In fact, the Light Bullet can, in some respect, be thought of as the “ultimate” optical, solitary 

wave. Solitary waves are among the most fascinating nonlinear wavepackets. Although they are 

subject to dispersion and/or diffraction they are marked by the absence of transverse broadening, 

which is otherwise an almost universal feature of linear wave propagation. The absence of linear 

broadening is facilitated by a balance with the nonlinearity. Solitary waves have been at the 

scope of science since their first observation in 1834 by Russell [Rus44] in a water channel and 

the first formulation of a nonlinear wave equation in 1894 by Korteweg and de Vries [Kor95] 

after work by Boussinesq [Bou71] and Rayleigh [Ray76]. Russell, in fact, already made 

systematic experiments in water tanks, i.e., he attempted to understand solitary waves from 

laboratory experiments. 

 
Fig. 2: Conceptual layout of this thesis and the areas of research it covers. The observation and 
characterization of discrete Light Bullets is the core topic. Activities in the field of pulse 
analysis, generation, numeric modeling, and sample description enable the understanding Light 
Bullets and are driven by it. 

The significance and universality of Russell’s observation was not widely recognized until the 

second half of the 20th century, due to a lack of mathematical techniques, and the difficulty of 

exciting and observing nonlinear waves in an experiment. The first breakthrough in this respect 

was the development of the inverse scattering method [Gar67, Gar74, Abl91], which allows the 

construction of analytic solutions to a certain class of nonlinear wave equations, namely those 

that are integrable. This method itself is based on 19th century work on differential analysis, 

mainly by Bäcklund [Bäc73, Bäc75, Bäc80, Bäc81] and Lie [Lie74, Lie80a, Lie80b] and much 

younger findings by Gelfand, Levithan, and Marchenko [Gel51, Mar86]. This breakthrough is 

particularly interesting for two reasons. First it shows that there is a class of localized solutions, 

which propagate stationary without changing at all or which periodically reacquire their initial 

state in a breathing manner. Moreover, it can be shown that these wavepackets behave like 

particles, i.e., they scatter elastically off each other and remain asymptotically invariant under 
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such scattering events. These wavepackets have therefore been termed “solitons” [Zab65]. A 

second fundamental finding is that solitons are not a feature of a particular nonlinear equation, 

but of a whole set, describing a large class of physical systems. Some examples are the 

Korteweg-de Vries equation, the nonlinear Schrödinger equation, and the Sine-Gordon equation. 

In this sense progress in the understanding of any of the physical systems improves the 

understanding of many other fields of science. 

It must be noted that albeit only few real systems in nature are strictly integrable. Nevertheless, 

many non-integrable physical systems, which support nonlinear waves, also exhibit stationary 

wavepackets. These are termed “solitary waves”, although the term “solitons” is in the literature 

colloquially used, too, as will occasionally be done in this thesis. Being the solution of non-

integrable systems solitary waves do not scatter elastically, which in fact means that their 

interaction properties are richer and more involved. Solitary waves have been predicted and 

observed in far too many systems to give a comprehensive overview [Abl91, Dau06] in this 

thesis. Just to name a few examples, solitons have been observed, e.g., in plasma waves [Zab65], 

deep water waves [Zak68, Bra96], weather phenomena [Cla81], in Bose-Einstein condensates 

[Bur99, Den00], and they play a central role in quantum field theory [Raj87]. Optical solitons are 

discussed below. 

Two more key developments paved the way for nonlinear wave physics. The first milestone was 

reached when Pasta, Fermi, Ulam, and Tsingou published results of the first numerical study on 

nonlinear wave propagation [Fer55]. They investigated a series of nonlinearly coupled oscillators 

and found that the nonlinearity lead to the periodic recurrence of the initial state of the system. 

This work is also the first example of a discrete system, which supports solitary wave formation. 

The relation to continuous systems was found by Zabusky and Kruskal [Zab65], who first noted 

that the continuum limit of the Fermi-Pasta-Ulam-Tsingou chain is the Korteweg-de Vries 

equation. Again this behavior is not specific, instead one can think of the Fermi-Pasta-Ulam-

Tsingou chain as the prototype for any chain of linked nonlinear, oscillating structures. Such 

chains, usually called discrete systems, are extremely abundant in natural and technical systems. 

Solitary waves have later been found in many discrete systems. They govern, e.g., the 

propagation of excitations in molecular systems [Dav91], such as in ionic crystals [Hol59a, 

Hol59b], in biomolecules [Dav73, Dav77], in acetylene [Su80, Su83], in DNA [Eng80], in 

molecular crystals [Fil89], in dielectric crystals [Swa99], or in phononic crystals [Sie88]. They 

also influence the propagation of excitations in the nervous system [Hod52, Hei05], the 

collective motion of nonlinear mechanical oscillators [Den92, Sat03], the development of 

localized structures in arrays of electric circuits [Mar95], the dynamics of coupled laser sources 
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[Gla98, Che01, Boc03], the development of traffic jams [Kur95, Kom95], the propagation of 

spin waves in antiferromagnets [Sch99, Sat04], the recurrence of discrete breathers in lattices of 

Josephson junctions [Bin00, Tri00], and the collective motion of atoms in arrays of Bose-

Einstein condensates [Tro01], just to name a few. 

The experimental observation of nonlinear wave propagation phenomena in general and solitary 

waves in particular in most of these systems is, however, difficult. Some of these systems are 

intrinsically hard to make experiments with, e.g., deep water oceanic waves and weather 

phenomena cannot be excited at will. In many other systems solitary waves exists on scales, e.g. 

time or length scales, where experimental analysis techniques are rare or do not exist at all. In a 

colloquial manner, nonlinear wave science was missing a sufficiently rich and accessible 

“playground,” in which nonlinear waves could be excited, observed and brought to interact with 

the environment under laboratory conditions. 

The second key development was therefore the invention of the laser [Mai60] and the almost 

immediate realization that the high flux of photons per mode generated by this class of light 

sources could induce nonlinear polarization [Fra61, Arm62] into virtually any optical material. 

The dominating contribution to the nonlinear polarization for all non-centrosymmetric optical 

materials, e.g., for all optical glasses, is the 𝜒(3)/Kerr-nonlinearity, which we consider in this 

thesis. Since its discovery nonlinear optics [Gar12] has established itself as the prototype 

environment for the understanding of nonlinear wave phenomena [Whi11] and has found 

widespread application [Gar13] in many fields of science and technology.  

Particularly noteworthy within the scope of this thesis is the fact that the propagation of light 

under the influence of diffraction in the paraxial limit, second order dispersion, and the focusing 

Kerr nonlinearity can be described by the nonlinear Schrödinger equation [But90, Agr01, 

Boy03]. If only a single transverse coordinate is considered this equation is integrable and 

consequenly one can exploit the similarity [Sha72] of dispersion and diffraction to excite spatial, 

as well as, temporal solitons, where nonlinearity balances diffraction or dispersion. Temporal 

solitons were first predicted [Has73] and observed [Mol80] in optical fibers. Spatial solitons 

were first observed in planar waveguides [Bar85, Ait90, Ait91a]. Discrete optical systems also 

support solitary waves. Infinitely extended waveguide couplers, so-called one-dimensional 

waveguide arrays, can be used to approximate chains of coupled oscillators, in the tight binding 

approximation [Kos54, Jon65]. Consequentially discrete optical solitons have been predicted 

[Chr88] and observed [Eis98]. Nonlinear optics has, however, developed into such a rich and 

many-faceted discipline that even a comprehensive overview over all kinds of optical solitons 

and solitary waves and their application is far beyond the scope of this thesis [Kiv03]. 
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The ability of the focusing Kerr effect to balance dispersion as well as diffraction along one 

transverse coordinate immediately leads to the question, if it can also balance linear broadening 

along a combination of two transverse coordinates or along all three simultaneously. In a 

homogeneous medium with local, nonlinear response this question can be answered from scaling 

arguments, using the Vakhitov-Kolokolov [Vak73] theorem. If applied onto the nonlinear 

Schrödinger equation one finds that only for the case of a single transverse coordinate solitary 

waves are stable. All solitary waves with more transverse degrees of freedom tend to diffract or 

collapse. Wave collapse [Akh68, She76, Ber98, Kiv00] was first observed in the context of 

unusual optical damage produced by Q-switched laser pulses in glass [Her64] and explained by 

the instability of the solitary wave of the two-dimensional nonlinear Schrödinger equation 

[Chi64]. This result was later generalized to more transverse dimensions [Sil90], where it was 

found that all high-dimensional solitary waves of the homogeneous nonlinear Schrödinger 

equation are unstable. The development of lasers with higher peak powers and shorter pulses 

meant that pulse collapse could eventually be studied in gases, too [Bra95]. It was found that the 

collapse of the optical wave onto smaller volumes is eventually balanced by the dielectric 

breakdown of the medium, limiting the peak intensity of the wave and generating a weakly 

ionized, defocussing plasma channel. Eventually a state of transient balance, called filament, is 

reached, which can extend over a few meters [LF99, Sku06]. In this filament the light 

co-propagates with a non-equilibrium plasma channel [Ber07, Cou07, Chi10, Bré12]. 

Although filaments are more or less stationary, spatiotemporal wavepackets, they are not Light 

Bullets in the strict sense. The generation of plasma is inherently related to loss and 

fundamentally limits the maximum propagation range. The stabilization of the wave collapse is 

also not externally tunable. Instead it relies on intrinsic material parameters, i.e. the molecule’s 

ionization energy or the amount of higher order dispersion [Fib04]. 

Other approaches for the stabilization of Light Bullets have therefore been proposed [Wis02, 

Mal05]. Many of these are, however, currently hard to implement experimentally, such as those, 

which rely on the independent modulation of the linear and nonlinear refractive index [Tow02, 

Adh04, Tor09, Ye09], the diffraction strength [Zho11], or the longitudinal modification of the 

waveguide array [Bai03, Mih05, Bel08]. Other approaches considerably weaken the concept of 

solitarity, e.g., Light Bullets and Light Bullet trains based on non-instantaneous [Bur09, Gur09], 

saturable [Ska97], resonant [Leb10], or bi-valued [Edm92] nonlinearities or those where linear 

loss stops wave packet collapse [Bau98, Büt00] but no equilibrium is reached. Spatiotemporal 

two-color solitons in 𝜒(2)-media [Liu99, Bur02] are inherently 2+1-dimensional, because they 

rely on the tilted pulse technique [Mar89, DT98] for group velocity matching and induction of 
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anomalous dispersion. Linear non-spreading spatiotemporal wavepackets [VL09, Cho10, Abd10, 

Pik12], albeit being called “linear Light Bullets”, are no solitary waves. They are also only 

weakly localized and their phase is non-stationary, although their amplitude is so. 

However, discrete optical lattices, e.g., waveguide arrays, with Kerr nonlinearity have been 

predicted to support stable, two-dimensional, solitary waves [Efr02, Efr03], which inherit their 

stability from one-dimensional, discrete, spatial solitons [Chr88, Eis98], within certain limits 

[Eil10]. Experimental observation was successful in various implementations of waveguide 

arrays, such as in photo-induced waveguide arrays [Fle03b, Fle03a, Nes03], laser written 

waveguide arrays [Per04b, Sza06b], and fluid filled photonic crystal fibers [Vie12]. A more 

detailed overview over the development and achievements of nonlinear, discrete optics is given 

in Section 4.1. 

In the core of this thesis we focus on the observation and characterization of discrete 

spatiotemporal solitary waves, so-called (discret) Light Bullets. Discrete Light Bullets have been 

predicted to be stable [Ace93, Tur93, Kiv94b, Led94, Mih04], as opposed to their homogeneous 

counterparts [Sil90]. However, experimental observation of stable, discrete Light Bullets, did lag 

behind the theoretical studies prior to this thesis. Attempts of observing discrete Light Bullets, 

even in one-dimensional waveguide arrays, remained inconclusive presumably due to a lack of 

spatiotemporal analysis techniques [Che03] and/or because of spurious, perturbative effects 

[Bab07, Ben08, Ben09, Gor10]. 

 
Fig. 3: Microphotographic image taken during a Light Bullet experiment. Depicted is the end 
facet of a fiber array. The red dot in the center is supercontinuum light generated in conjunction 
with the Light Bullets in the central core of the fiber array. Orange patches are dirt particles 
illuminated by supercontinuum light scattered into cladding modes. 

As can be seen from Fig. 2 in this thesis we implement, improveand develop spatiotemporal 

pulse generation and pulse analysis techniques. We analyze various discrete optical environments 

for their suitability for spatiotemporal nonlinear optics and for their ability to sustain stable, 
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discrete Light Bullets. We also investigate two different propagation models. With this 

experimental infrastructure we have been able to observe two different classes discrete Light 

Bullets in fiber arrays and carefully characterize their spatiotemporal properties and evolution 

dynamics. For in image of a fiber array during a Light Bullet experiment see Fig. 3. 

We deal with issues related to the generation of spatiotemporal pulses. Forming of pulses with 

arbitrary temporal shape is an active topic in photonics [Sch05, Mon10, Cun10] and spatial beam 

shaping is routinely used in many experiments. However, the combination of both techniques, 

i.e. the generation of arbitrary spatiotemporal fields is currently not discussed much beyond the 

level of conceptual ideas. We first introduce basic pulse generation facilities, which had been 

available in this thesis. Then we focus on a spectral pulse shaping technique, which we have 

adapted for high power, high throughput, low aberration operation in collaboration with the 

Optical Systems Design and Microstructure Technology groups of the Institute of Applied 

Physics (IAP). Spatial shaping is discussed in the context the generation of discrete vortices in 

collaboration with the Microstructure Technology group of the IAP. An outlook onto to a 

potential concept for spatiotemporal, arbitrary pulse generation based on dispersive metasurfaces 

is then given. 

Spatiotemporal analysis techniques on the other hand have experienced substantial development 

in the last years. This development was mostly driven by temporal analysis techniques for 

ultrashort pulses [Kan93, Iac98, Tre02]. Many of these techniques are, in principle, compatible 

with spatial multiplexing, e.g., by combining them with imaging techniques [Akt10]. We present 

specific spatiotemporal pulse analysis techniques that we have implemented and developed in 

the course of this thesis. As the “workhorse” we set up an imaging cross correlator, a basic 

spatiotemporal pulse analyzer. It is also the basis for the imaging cross-correlator FROG, which 

we developed. It is one of the very few three dimensional spatiotemporal, phase resolving 

analysis techniques, that do not need a coherent reference. It measures the optical field on the 

largest number of independent points reported so far. Another product of this thesis is a 

simplified FROG, which only reconstructs signals along a single spatial dimension but does so 

orders of magnitude faster. We also demonstrated the feasibility of a concept for the unification 

of pulse generation and analysis, called Analysis-by-Control, which can be used for rapid 

prototyping of experiments. 

Meaningful spatiotemporal experiments require samples with sufficiently interesting 

functionality. As the optical functionality of solid state samples is induced by their structure, a 

sophisticated three dimensional structuring technique is a prerequisite. This makes many highly 

developed structuring techniques, such as most lithography techniques [Lev05] unsuitable, 
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because they act on surfaces only. Three dimensional patterning of the sample, not only affects 

the spatial response but can also be used to tailor the local temporal response. This thesis focused 

on spatiotemporal, nonlinear optics in discrete structures [Chr03], i.e., in waveguide arrays. In 

particular we discuss femtosecond written waveguide arrays [Nol03, Per04b], produced by the 

Ultrafast Optics group of the IAP and drawn fiber arrays [Röp07, Röp11] produced by the 

Institute of Photonics Technologies. These classes of discrete optical samples are compatible 

with spatiotemporal, nonlinear experiments. Systematic comparison of the main effects that 

influence pulse propagation in fiber arrays reveals that the temporal scale of the Light Bullets is 

expected to a few femtoseconds only. We therefore introduce two propagation models that can be 

solved numerically. The first is the canonical model for spatiotemporal optics and is used to 

discuss characteristic parameters of the samples and the impact of geometry thereon. The second 

is also quantitatively correct and is used for numeric cross-validation of experimental data.  

The core part of the thesis is devoted to the observation and characterization of nonlinear, 

spatiotemporal waves in waveguide arrays. As outlined in Fig. 2 it makes use of all peripheral 

developments of the prior chapters. We first investigate spatiotemporal wave propagation in a 

one-dimensional, segmented waveguide array in a parameter regime where Light Bullets cannot 

be observed and the dynamics is relatively simple and straightforward. Then we deal with the 

observation of fundamental Light Bullets, the characterization of some of their peculiar static 

and dynamic properties and the observation of Vortex Light Bullets. This ordering follows the 

direction of increasing complexity and decreasing symmetry. Special focus is put on 

understanding the influence of higher order effects, which limits the propagation length of Light 

Bullets but also induces an intriguing, intrinsically spatiotemporal evolution mechanism. This 

mechanism is related to the interdependence of the nonlinear, temporal, and spatial response of 

the system. We show that this interdependence also causes asymmetry in the spatiotemporal 

spectra of the Light Bullets and leads to superluminal decay. Later we excite the waveguide array 

with an asymmetric input pulse, exciting Vortex Light Bullets, which are, to the best of our 

knowledge, the most complex spatiotemporal solitary waves observed in an experiment, so far. 

All experimental results are backed up by rigorous numerical simulations and discussed in the 

context of simplified analytical models. 
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 Spatiotemporal Pulse Generation and Forming 2.
At the beginning of most experiments in nonlinear optics is the generation of a pulsed field 

𝐸0(𝑥,𝑦, 𝑡) with the properties that are desirable in this specific experiment. In this chapter we 

will present methods for the generation of ultrashort, high-power pulses, which will later be used 

in experiments to excite spatiotemporal fields with growing complexity. We will introduce the 

methods in the order of growing complexity and flexibility, starting with basic methods for fixed 

wavelength, fixed form pulse generation in Section 2.1 and then lift each of the restraints, 

eventually allowing us to generate pulses with arbitrary temporal shape using the spectral pulse 

shaping technique discussed in Section 2.2. A case study on the possibility and limits of spatial 

shaping of ultrashort pulses is presented in Section 2.3. Section 2.4 gives an outlook onto a 

possible future concept for spatiotemporal wave shaping, based on a generalization of multicolor 

metamaterial holograms. 

Note that in this chapter, as in the rest of this thesis, we ignore polarization and implicitly assume 

linearily polarized light. Generalization to pulse generation and analysis techniques, which can 

handle arbitrarily polarized fields, is conceptually straightforward, albeit technically difficult to 

implement. Moreover it was unnecessary for the experiments discussed in Chapter 5, because the 

experimental environments introduced in Chapter 4 are polarization insensitive. 

2.1 Basic Pulses: Oscillators and Amplifiers 

Classically one aims for pulses 𝐸(0)(𝑥,𝑦, 𝑡) = 𝐴(0) exp �−2 log(2) �𝑥
2

𝑤2 + 𝑦2

𝑤2 + 𝑡2

𝑡(0)2�� exp {𝑖𝜔0𝑡}  

with simple, smooth and well defined spatial and temporal properties, such as peak power 

𝑃(0) = �𝐴(0)�
2
, beam diameter 𝑤, pulse duration 𝑡(0), and carrier wavelength 𝜆0 = 2𝜋𝑐ph/𝜔0. 

 
Fig. 4: Principle chart of available beam lines for the experiments described in this thesis. Italic 
labels denote unimplemented or unfinished devices. SPS: spectral pulse shaper. Interoperability 
chart denotes beam lines, that can be run in parallel. 

Trains of such pulses, or at least approximations thereof, can be produced in modern short pulse 



2.1 Basic Pulses: Oscillators and Amplifiers 

 11 of 99 

laser systems and chirped pulse amplifiers (CPAs). Arguably the most common lasers/CPA types 

used in contemporary, ultrafast optics labs, are based on lasing and amplification in Titanium-

doped Sapphire (Ti:Sa) crystals. The Ti:Sa crystal offers broadband gain over almost a quarter 

octave centered around a peak gain wavelength of roughly 𝜆 = 800 nm. Consequentially it is 

limited to generate pulses with a bandwidth of less than 200 nm and corresponding pulse 

durations of little less than 10 fs, with a carrier wave cycle duration of 2 fs. These specifications 

are rarely reached in real-world systems. In particular CPAs suffer from spectral narrowing due 

to spectrally uneven gain and pulse degradation due to non-compensated higher order dispersion. 

Unless stated otherwise, in our experiments we used a Ti:Sa modelocked, femtosecond laser 

oscillator Micra from Coherent, which produces pulses with a repetition rate of 80 MHz, a pulse 

duration of 𝑡(0) < 20 fs, with 50 … 100 nm bandwidth and a pulse energy of 𝐸 = 4 nJ. As 

depicted in Fig. 4 it can be used directly or pump a CPA. The CPA is a Legend Elite USP from 

Coherent, which reduces the repetition rate to 1 kHz and increases the pulse energy to 2.5 mJ. 

The pulse bandwidth is reduced to 50 nm, with a minimal pulse duration of 25 fs. This equates 

into a peak power of 𝑃(0) ≫ 10 GW, which is larger than that of the Townes-soliton [Chi64], 

which is 6.3 GW in air. On the one hand this means that special care has to be taken when 

working with the beam to maintain its spatial and spectral quality, by reducing the beam path 

while maximizing its diameter, avoiding transmissive optics, and only using high-power 

compatible optical elements. On the other hand this means that the pulse power is more than 

sufficient to generate a plethora of nonlinear effects in solid state systems, which typically have 

nonlinearities that are at least three orders of magnitude larger than that of air [Boy03]. We are 

therefore in the advantageous position to be able to invest a part of the pulse energy into 

modifying the pulse‘s properties and changing its shape, envelope, and carrier wavelength. 

Wavelength modification is achieved by routing half of the pulse through an optical parametric 

amplifier (OPA). The OPA uses multistage difference frequency generation (DFG) in 𝜒(2)-

crystals to turn the 1.2 mJ pump pulse from 𝜆0 = 800 nm into a pair of pulses of longer 

wavelengths 𝜆OPASig and 𝜆OPAidl. They are related to the carrier wavelength 𝜆0 of the pump pulse 

according to photon energy conservation 𝜆OPAsig
−1 + 𝜆OPAidl

−1 = 𝜆0
−1 and marked in Fig. 4. The 

remaining degree of freedom is determined by photon momentum conservation and is fixed by 

the adjustment of the angle of the 𝜒(2)-crystals with respect to the pump beam. The wavelength 

of the signal pulse can be tuned in the range of 𝜆OPAsig = 1100 … 1600 nm. The conversion 

efficiency is in the range of 10 … 40%. The signal pulse thus has an energy of 𝐸OPASig =

50 … 300 µJ. The energy of the idler pulse 𝐸OPAidl is accordingly a bit lower because of its lower 



2. Spatiotemporal Pulse Generation and Forming 

 12 of 99 

photon energy. The pulse duration is increased with respect to the pump duration by the limited 

DFG gain bandwidth. Signal and idler have a duration of 𝑡OPA
(0) ≈ 50 fs and a Gaussian spatial 

cross section. 

In summary we have, at this point, the ability to generate nearly transform limited pulses with a 

duration of 25 fs at a fixed carrier wavelength of 𝜆0 = 800 nm and a pulse energy of 𝐸 =

1.2 mJ. In a jitter-free, synchronized beam line we have pulses with tunable wavelength of 

𝜆OPASig = 1100 … 1600 nm, a duration of 𝑡OPA
(0) = 50 fs, and a pulse energy of  𝐸OPA > 50 µJ. 

Later we shall see that this combination is already very useful, as one beam can be used to excite  

spatiotemporal (ST) effects in an experiment. The other beam serves as a known reference which 

can be used to gate and measure the nonlinearly reshaped ST field. As all experiments discussed 

in this thesis have been carried out in fused silica, the two available wavelength ranges can be 

used to excite samples in the normal and the anomalous dispersion regime [Agr01], triggering 

very different nonlinear dynamics. 

2.2 Advanced Pulses: Spectral Pulse Shaping 

After having overcome the limitation of a fixed carrier wavelength we will now discuss the 

spectral pulse shaper (SPS), which we will use to obtain variable pulse shapes. SPS stages are 

being installed for the oscillator, the CPA and the OPA signal beam line, as shown in Fig. 4. Only 

the SPS in the CPA beam line is currently operable, however, the principles of operation and 

technical implementations are identical and are discussed in this chapter. 

 
Fig. 5: (a) Physical layout of the optimized SPS setup, as discussed in Section 2.2.3. The 
polarizer, spectrometer, and SH stage are not displayed in this scheme. (b) Autocorrelation 
traces of pulses after the SPS setup, before (green) and after (blue) compensation of the 
unknown spectral phase 𝜙0 with the MIIPS algorithm. The compressed pulse has an 
autocorrelation FWHM duration of 37 fs whereas 36 fs would be the transform limit. 

Pulse shaping in time domain is not an option for femtosecond pulses due to the unavailability of 

filters 𝐹(𝑡) with sufficiently short response time (or bandwidth, in other words), which can 

transform in input pulse 𝐸(0)(𝑡) into an arbitrary output pulse 𝐸out(𝑡). The output is  related to 
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the intput pulse with the transform equation 𝐸out(𝑡) = 𝐹(𝑡) ⊗𝑡 𝐸(0)(𝑡) [Phi95], where ⊗𝑡 

denotes convolution in the time domain. However, we can exploit the fact that manipulation in 

the frequency domain becomes simpler for shorter pulses, as all spectral features grow with 

decreasing duration. In frequency domain the transform relation is a simple product:  

 ( ) ( ) ( )(0)
out EE Fω ω ω= ⋅ . (1) 

This means that arbitrary output pulses can be generated if the input spectrum can be modulated 

by the complex Fourier transform of the filter 𝐹(𝜔), i.e., if each frequency (or wavelength) 

component can be manipulated in amplitude and phase. For practical reasons we are limited to 

lossy filters |𝐹(𝜔)| < 1 and to a certain bandwidth Δ𝜔 and spectral resolution 𝛿𝜔. These 

quantities determine the maximum temporal window Δ𝑡 = 2𝜋/𝛿𝜔 over which the filter can 

redistribute pulse energy and the minimal feature size that the filter can generate 𝛿𝑡 =

max (2𝜋 Δω⁄ , 𝑡(0)), where 𝑡(0) is the transform limited input pulse duration. 

The SPS implements such a spectral filter in the form of a 4f-setup [Wei95, Mes97], as depicted 

in Fig. 5(a). A diffraction grating disperses the wavelength components into beams with separate 

directions, which are focused by a cylindrical lens on the Fourier plane in the center of the setup. 

Here each wavelength component has a distinct location, by which it can be addressed and 

modulated. An inverted setup resynthesizes the pulse from the modulated spectrum. Common 

strategies for the spectral modulation [Wei00] are micromechanical adaptive arrays [Hac03, 

Tan12] or liquid crystal displays [Yel97]. Here we have used a liquid crystal spatial light 

modulator (SLM) with a one-dimensional (1D) display consisting of 640 pixels. In principle, an 

increase in spectral resolution by using a two-dimensional (2D) device is possible, up to the 

point, where line-by-line shaping is within reach [Cun10, Fer11]. The SLM used in this thesis 

consists of two back-to-back mounted transmissive displays with their extraordinary axis 

oriented perpendicular to the principal optical axis of the system and at +/-45° with respect to the 

pulse’s polarization direction. By independent variation of the voltages applied to each pixel of 

both displays we can independently modulate each frequency component’s phase and rotate its 

polarization state and thus, via a polarizer, modulate its amplitude. The amplitude |𝐹(𝜔)| and  

the phase arg[𝐹(𝜔)] are given by the relations 

 ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )A B A B

cos arg ,
2 2

F F
ω ω ω ω

ω ω
 F −F F +F

=   =    
 

 (2) 

where Φ(A/B)(𝜔) is the phase shift (modulus 2𝜋) between the ordinary and extraordinary wave 

in display A/B for the frequency 𝜔. Given the design parameters of the system we can shape 

over a bandwidth Δ𝜔, with spectral resolution 𝛿𝜔 of 
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 600 THz 0.9 THz ,ω δω∆ = =  (3) 

which equates into a temporal resolution 𝛿𝑡 and shaping range Δ𝑡 of 

 ( )0max(10 fs, ) 6.7 ps.t t tδ = ∆ =  (4) 

While the above presented concept of spectral pulse shaping is elegant, powerful, and 

conceptually simple, there are quite a few pitfalls that have to be overcome in order to make the 

device usable for practical purposes. Important obstacles and solutions are outlined in the 

sections below. 

2.2.1 Calibration 

To obtain a sought-after pulse we need to define a spectral filter 𝐹(𝜔) and manipulate the 

spectral amplitude |𝐹(𝜔)| and phase arg [F(𝜔)] according to Eq. (2). The SLM, however, is only 

able to apply voltages 𝑈𝑖
(A/B) to pixels with index 𝑖. We therefore have to find a map 𝜔𝑖 = 𝜔(𝑖), 

which translates pixel indices 𝑖 into corresponding frequencies 𝜔𝑖. Then we have to map 

voltages onto applied phase shifts Φ𝑖
(A/B)(𝑈𝑖

(A/B) ). We have to do so for both displays A and B, 

as well as, for each pixel index separately, because both displays act differently and are 

wavelength dependent. 

The pulsed source itself is used for the calibration. In a first step the pulse is routed through the 

SPS and its spectrum is observed with a spectrometer after the pulse shaping device. Then a 

pixel 𝑖 is selected and randomly manipulated. A spectrum for each realization is recorded and a 

computer algorithm determines the wavelength which has maximum variation. After all pixels 

have been treated in this manner, 𝜔𝑖 = 𝜔(𝑖) is determined. In a second step one display is set 

inactive, i.e., into a state of maximum voltage, where the extraordinary axis is nearly parallel to 

the direction of propagation and thus Φ = 0. The other display’s voltage is now varied 

systematically through all possible values, while the transmission of each wavelength is observed 

with the above mentioned spectrometer. Via inversion of Eq. (2) Φ𝑖
(A/B)(𝑈𝑖

(A/B) )   is then fully 

determined. 

The SLM is now fully characterized and can be used to set the phase Φ𝑖
(A/B)  of each pixel with 

an accuracy of roughly 50 mrad. After the polarizer this translates into −16 dB range for the 

filter amplitude |𝐹(𝜔)| and 50 mrad accuracy for the filter phase arg [F(𝜔)]. 

2.2.2 Determination of the Initial Phase 

At this point the output pulse 𝐸ou𝑡(𝜔) is still not fully determined, although the action of the SPS 

and thus the shape of 𝐹(𝜔) is. The exact shape of the input pulse 𝐸(0)(𝜔), or more precisely, its 
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spectral phase 𝜙0(𝜔), remains unknown. For the CPA there are four main sources for this 

uncertainty: (i) the CPA does not produce fully transform-limited pulses; during amplification in 

the CPA cavity a considerable amount of high order dispersion is acquired; (ii) the compressor 

must overcompensate the pulse chirp for the OPA to work perfectly, as some of the internal 

optics of the OPA introduce chirp; (iii) the pulse is reflected off dielectric mirrors and transmitted 

through a single thick beam splitter, all of which add additional chirp, (iv) slight misalignments 

of the SPS add additional chirp. All these accumulated phase variations, that considerably 

degrade the shape of an ultrashort pulse, can be compensated by the SPS, if they can be 

measured. Phase measurement for ultrafast pulses is a research subject in its own right and has 

seen the development of many methods over the last decades, such as FROG [Tre02] or SPIDER 

[Iac98]. Here we used MIIPS [Loz04], a method that retrieves the unknown spectral phase 

𝜙0(𝜔) of a pulse, using the SPS itself. To do so a second harmonic (SH) crystal of sufficient 

bandwidth is placed after the setup and the spectrum of the SH is recorded, while the phase 

arg[𝐹(𝜔)] of the SLM is varied systematically. An iterative retrieval algorithm then determines 

the local phase curvature 𝑑2𝜙0/𝑑𝜔2 from the data and then the unknown phase 𝜙0(𝜔) via 

numerical integration. The algorithm needs less than one minute to converge onto a result and 

can compensate the unknown spectral phase 𝜙0(𝜔) to a degree, which allows us to get within 

10% of a transform limited pulse, as shown in Fig. 5(b).  

2.2.3 Improved Optical Design 

While the SPS is now, in principle, fully operational this is not the case in reality. The naïve 

design from above has two major flaws that need to be rectified: low system throughput and 

imaging aberrations. The former is mainly determined by the diffraction efficiency of the 

diffraction gratings and can be mitigated by the use of efficient gratings and an appropriate 

choice of diffraction angles. In collaboration with the microstructure technology group of the 

IAP we designed and produced transmissive, electron beam lithographically written diffraction 

gratings, made from binary groove/ridge combinations in fused silica [Cla03]. They combine 

three important properties: (i) a high damage threshold, (ii) > 95% diffraction efficiency for 

700 nm < 𝜆 < 900 nm, and (iii) high regularity, with no measurable ghosting. These gratings 

outperform all commercially available classic gratings designs, that either suffer from low 

efficiency, such as holographic gratings, or ghosting, such as ruled gratings. With the use of these 

gratings we can obtain a total system efficiency of more than 70%, limited mostly by the 

transmission of the SLM, which could be improved with anti-reflection coatings. 

Imaging aberrations are, however, harder to mitigate. Highly efficient gratings necessarily have 
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small periods to make higher diffraction orders evanescent. This automatically introduces large 

diffraction angles of the various wavelength components, leading to a high numerical aperture 

(NA) of NA > 0.15. To make matters worse, high power operation necessitates large beam 

diameters in the order of 10 mm, such that phase front errors introduced by aberrations have a 

particularly strong impact. One further needs to consider chromatic aberrations, which arise from 

the large bandwidth of the system. In fact it was found that in the original design with singlet 

Fourier transform lenses, spectral components which are more than 10 nm away from the center 

wavelength, have considerable residual phase curvature. They converge onto a cylindrical focus 

a few meters after the SPS. In collaboration with the optical system design group of the IAP the 

SPS setup was thus systematically investigated with optical design software, It was found that 

replacement of the singlet Fourier transform lenses with doublet lenses reduces the phase front 

error from > 10 𝜆 to 0.2 𝜆, if the device positions can be set with tolerances < 0.1 mm. 

Chromatic aberrations have been shown to be of little impact. 

The SPS was consequentially computer-designed on a custom base plate to meet tolerances and 

to eliminate all unnecessary degrees of freedom in the adjustment process. A schematic of the 

resulting device is displayed in Fig. 5(a). In summary we have designed and characterized an 

SPS that surpasses, to the best of our knowledge, all commercially available devices in terms of 

efficiency, resolution, preservation of beam quality, and maximum power throughput. 

2.2.4 Coherent Spectral Broadening 

At this point the capabilities of the SPS can still not be fully exploited. The SPS is designed to 

work for wavelengths from 700 nm to 900 nm and thus shape pulses with features as small as 

10 fs, as discussed in Eq. (3). In the current setup pulse features below 25 fs are, however, 

inaccessible due to the lack of bandwidth of the input pulse. 

To exploit the full capabilities of the SPS the input pulse needs to be broadened spectrally. While 

nonlinear photonics offers a plethora of pulse broadening techniques most of these are unsuitable 

for our purpose. Self-phase modulation (SPM) based broadening in a bulk material cannot be 

used because the pulse power is not constant over the beam’s cross section, which would lead to 

a radially dependent broadening. Classic waveguide (WG) broadening strategies [Sha82] are 

unsuitable because (i) solid state WGs [Hus01] are not able to handle multi-GW peak power 

pulses, nor are hollow-core bandgap fibers [Ouz05] and (ii) stimulated Raman scattering (SRS) 

redshifts the spectrum quickly and leads to strong pulse to pulse variation [Sol07] of the 

spectrum. 

However a different class of WGs can be used to tackle these issues – the capillary WG [Mar64] 
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or its more advanced cousin, the Kagomé WG [Cou06]. Here light is guided in a fairly large low 

index void surrounded by a dielectric cladding. The guided field is not a mode in the classical 

sense but a smooth superposition of quasi-parallel plane waves with small propagation angles; 

similar to a paraxial, radial Gaussian beam in free space with many wavelengths in diameter. 

They interact with the refractive index step at the boundary by Fresnel reflection; the magnitude 

of which is near unity due to the grazing incidence angles. Moreover the phase relation here 

imposes zero-field at the boundary. Light is thus confined to the hollow core, with very little 

energy in the solid state cladding. For vacuum-“filled” Kagomé WGs propagation losses of less 

than 0.2 dB/m have been reported and guiding of multi-mJ femtosecond pulses has been 

demonstrated [Wan11]. The core can also be filled with gases of varying pressure, by simply 

placing the fiber in a gas-filled vacuum chamber.  

Here the fiber has a 200 µm core diameter and is filled with Argon. We exploit in the absence of 

SRS from SPM due to atomic nature of noble gases [Nol10, Jol11]. The SPM broadened 

spectrum is then fed into the SPS and recompressed [Nis96, Nis97, Hec11]. 

 
Fig. 6: (a) Spectrum after propagation in a capillary fiber with (blue) no Ar filling and 
FWHM = 58 nm and (green) 500 mbar Ar filling and FWHM = 94 nm. (b) Calculated  
transform limited pulses, belonging to spectra of (a). (c) White light microscopy image of the 
capillary. 

At the current level of implementation we reach spectral broadening of a factor of less than 2 

resulting in a spectral full-width at half maximum (FWHM) of 94 nm at a transmission 

efficiency of 40% with 500 mbar Argon pressure. Temporal recompression has not been tested 

at this point because the beam quality is seriously ill-affected by plasma generation and a further 

increase in pressure increases this detrimental effect. This could be mitigated by an increase of 

the diameter to 400 µm, which would be the optimal value [Voz05, Rot11] with a broadening 

factor of up to 7 at an Argon pressure of 250 mbar, without considerable plasma formation. This 

value, together with pulse recompression, is planned to be demonstrated in the next iteration of 

the experiment. 



2. Spatiotemporal Pulse Generation and Forming 

 18 of 99 

2.3 Spatial Shaping: a Rotating Case Study 

At this point we have overcome all limits that pertain to the temporal and spectral properties of 

the generated light and we have taken great care not to degrade the Gaussian cross section of the 

pulse. Nevertheless for some experiments a non-Gaussian spatial shape is desirable. 

Similar to the strategy of indirectly shaping pulses in the spectral domain, discussed in Section 

2.2, we here exploit a Fourier-space shaping technique to design the beam’s focal pattern 

𝐸foc(𝑥, 𝑦) = 𝐹(𝑥,𝑦) ⊗𝑥,𝑦 𝐸(0)(𝑥,𝑦), which is in turn coupled into a sample. Here 𝐹(𝑥,𝑦) is a 

spatial filter, whereas 𝐸(0)(𝑥,𝑦) is the focal plane distribution, without any filter. Such a filter 

can be implemented in the far field (e.g., in the collimated beam, before focusing with a lens of 

focal length 𝑓) as  

 ( ) ( ) ( ) ( )0
foc , , ,E x y F x y E x y= ⋅      , (5) 

where 𝑥 = 𝑘𝑥�𝑓/𝑘, 𝑘 = 2𝜋/𝜆, and 𝑘𝑥� is the spatial frequency that belongs to 𝑥� and a similar 

realtion holds for 𝑦�. 𝐹(𝑥�,𝑦�) is then nothing but a (partially) transmissive plate that modifies the 

local phase and amplitude to holographically generate a sought-after focal field distribution. 

 
Fig. 7: (a) Phase plate design. (b) Experimental and (c) simulated image of the focal spot 
intensity produced by a Gaussian beam and the phase plate. Adjacent peaks have 2/3π phase 
difference. Figure adapted from [Eil13c]. 

This strategy was used to excite Vortex Light Bullets (VLBs) in fiber arrays, which are discussed 

in detail in Section 5.4. To excite VLBs it was necessary to generate a compact triangular vortex 

and couple it into a waveguide array (WA), although excitation by a homogeneous vortex was 

predicted to be feasible [Fer05], it is inefficient. Generation of a discrete vortex field was 

achieved by modification of the well-known spiral phase plate technique [Sue04], in which a 

spiral phase ramp with a phase shift of 2𝜋𝜋 per revolution is imprinted on a collimated beam, 

where the integer 𝜋 denotes the topological charge of the resulting beam. Upon Fourier 

transformation, carried out by insertion of a lens and observation in the lens’ focal plane, a 

continuous optical vortex with topological charge 𝜋 is generated. The phase shift is usually 

encoded in a transparent plate of refractive index 𝑛, where the thickness of the plate has an 

azimuthal gradient, such that it grows by 𝜋𝜆/(𝑛 − 1) per revolution. We adopted the technique 
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for the generation of a discrete, triangular, compact Vortex, which by definition can only have an 

angular momentum of 𝜋 = ±1, by replacing the smooth, azimuthal gradient by discrete height 

steps 𝛿 in a silica wafer. The phase shift 𝜙 is related to the step height 𝛿 by  

 ( )( ) 02 1 /nφ π λ δ λ= − . (6) 

Here 𝛿 = 𝜆
3� /(𝑛(𝜆0 = 1550 nm) − 1) per 120° arc. The plate was fabricated in the 

Microstructure Technology Group of the IAP, using an etching technique. 

As opposed to continuous vortices, the vortex-character of the focal plane pattern is directly 

confirmed by the spiraling motion of the three peaks before and after focal plane. Moreover, we 

find that the size, shape, and relative distance of the three peaks of the discrete vortex coincides 

very well with the arrangement of WGs in the fiber array (see Section 4.3.2). So a high coupling 

efficiency of > 60% can be reached in simulations; > 40% was achieved experimentally. 

One must note, however, that this technique has some limitations, as it intrinsically introduces 

spatiotemporal distortions. This can be seen from the definition of the step height 𝛿, which only 

leads to a “correct” 2𝜋 phase shift for one spectral component of the pulse at 𝜆0 = 1550 nm. 

This distortion is, however, small because the pulse’s bandwidth of 70 nm is relatively small, 

compared to the carrier wavelength.  

2.4 Outlook: Full Spatiotemporal Waveshaping with Metasurfaces 

While in the last section we have considered the wavelength-dependent nature of the spatial 

shaping process to be detrimental, albeit small, we now argue that it could be exploited to 

generate tailored spatiotemporal distributions of light. The idea is to combine the concepts put 

forward in Sections 2.2 and 2.3 into a common approach along the lines of a spatiotemporal (ST) 

generalization of Eqs. (1) and (5), such that  

 
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

0
out

0
out

, , , , , ,

, , , , , , .

E x y t F x y t E x y t

E x y F x y E x yω ω ω

= ⊗

= ⋅     

 (7) 

This relation states that we could generate an arbitrary 𝐸out(𝑥,𝑦, 𝑡), if we were able to place a 

holographic plate in the far field, whose behavior was wavelength dependent in a controllable 

manner, i.e., that it would have arbitrary dispersion. It is clear that the ansatz from Section 2.3, 

using height variations in a dielectric material is unsuitable for this approach. None of the 

wavelength dependent terms in Eq. (6) is sufficient to generate the desired dispersion, neither in 

terms of the amount, nor in terms of flexibility. The approach is also hopeless because of its 

insufficient information content: the height variation 𝛿 is the only degree of freedom per spatial 

pixel, with which we would have to try to shape a multi-valued, complex spectral response per 
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spatial pixel. 

The number of degrees of freedom per pixel must therefore be increased.  The optical response 

of each pixel and for each fixed wavelength must, however, remain close to that of a 

homogeneous material to avoid scattering into unwanted spatial frequencies. This could be 

achieved by the subwavelength structuring of each pixel with metallic subwavelength structures, 

that exhibit geometry-tunable plasmonic resonances [Pen99, Cai10] close the desired wavelength 

of operation. This approach would work entirely without a variation of the sample height; the 

resulting structures are thus referred to as meta-surfaces [Aie12a, Aie12b]. 

Of course, this approach would have its own difficulties, which cannot be guaranteed to be 

solvable for technical and fundamental reasons. Broadband operation close to a damped system 

resonance necessarily involves losses, because of the causality of the response function [Kro26, 

Kra27]. Furthermore, operation at optical frequencies is inevitably linked to broad resonance 

features due to the strong damping of electronic excitations near the plasma frequency of the 

metal structures [Joh72]. Nevertheless there has been recent, theoretical progress towards the 

creation of tailored spectral responses by the superposition of resonances [Dir13], albeit under 

simplifying assumptions. 

 
Fig. 8 (a) Schematic representation of a metasurface ST waveshaping device. (b) Experimental 
Fourier plane pattern at 𝜆1 = 1300 nm and (c) at 𝜆2 = 905 nm. Figure adapted from [Wal12]. 

A first step towards the experimental demonstration of full spatiotemporal waveshaping with 

metasurfaces was presented in [Wal12]. A two-color metamaterial hologram was designed, 

which produces two distinct images in the Fourier plane, if illuminated with two different 

wavelengths at 𝜆1 = 1300 nm and 𝜆2 = 905 nm. A schematic representation of the 

experimental layout and experimental Fourier plane images for both wavelengths are displayed 

in Fig. 8. This result was achieved by the fabrication of a computer generated hologram made of 

four different subwavelength pixel designs labeled A1, A2, B1, and B2. They have been designed 

such that at 𝜆1 pairs with equal letters produce equal feedback, whereas at 𝜆2 pairs with equal 
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numbers do so. Therefore at 𝜆1 a binary hologram could be encoded independently of another 

one at 𝜆2. Extension towards an arbitrary number 𝑊 of wavelengths, would, however, require an 

exponentially increasing number 𝒪(exp(𝑊)) of unit cell designs, such that the potential of this 

specific approach for ST waveshaping, although clearly visible, remains limited. 

Furthermore challenges in modelling, design, and fabrication of spatially dispersive structures 

with an arbitrary temporal response are huge and at this point it remains unclear if any of these 

issues could be solved in a manner that makes metasurface wave shaping attractive for future 

application. However, the recent theoretical and experimental progress puts the “holy grail” of 

ST optics – full ST light field control – on the horizon of photonics, although it certainly is a 

vision at this stage. 
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 Spatiotemporal Pulse Analysis Techniques 3.
While the last chapter has been devoted to the generation of arbitrary ST pulse shapes, in this 

chapter we will discuss various techniques that are used for the analysis of unknown ST fields, 

mostly those that have been generated or modified by nonlinear ST experiments which will be 

reported in Chapter 5. 

We will first present the imaging cross correlation technique (iXCorr) in Section 3.1, which is 

the workhorse for all ST experiments. It is a reasonable tradeoff between attainable resolution 

and depth of information on the one side and short measurement duration on the other side. This 

technique will then be generalized to the Imaging Cross Correlation Frequency Resolved Optical 

Gating technique (ImXFROG) in Section 3.2, which returns full ST information, with high 

temporal resolution at the price of extensive measurement times. Section 3.3 is devoted to 

OXFROG, a low dimensional version of ImXFROG that combines the advantageous properties 

of iXCorr and ImXFROG but is only applicable to a certain, albeit large class of experiments. 

The chapter concludes by giving an outlook on the Analysis by Control (AbC) technique in 

Section 2.4, that was initially developed to investigate aberrations of the SPS setup discussed in 

Section 2.2. AbC is a novel approach towards the integration of pulse shaping and analysis into a 

single step. We envision AbC to allow for rapid prototyping of optical experiments and argue 

that its potential is just about to unfold. 

3.1 Imaging Cross Correlator: Getting an Overview 

Besides autocorrelation [Wei11] the arguably most basic and also most abundant class of 

techniques for the analysis of ultrashort pulses are cross correlation (XCorr) techniques. These 

evolved due to a lack of electronic sampling techniques with sufficient temporal resolution to 

resolve femtosecond features of optical signals. They are based on the interaction of the pulse to 

be characterized, called the signal, with a known pulse of similar or shorter duration, called the 

gate. The gate is delayed with respect to the signal pulse by a variable delay 𝑡. Often the 

interaction is of a sum-frequency (SF)  type and takes place in a 𝜒(2)-crystal of appropriate 

material, orientation, and thickness to guarantee phase matching of signal and gate photons over 

a sufficient bandwidth. Thus all photons present in the signal are up-converted with similar 

probability. Under these conditions a slow detector, which detects only the SF photons, records 

the following signal 𝐼SF(𝑡): 

 ( ) ( ) ( )SF Sig Gate dI t I I tt t t∝ −∫ , (8) 

i.e., the signal is sampled by the gate.  
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In nonlinear optical experiments well-defined gate pulses are often available as the excitation is 

almost always carried out with short, transform-limited laser pulses. These pulses can be split 

into multiple beam lines, one of which can bypass the experiment. 

Depending on the concrete experimental setting Eq. (8) can be further approximated. If the gate 

pulse can be approximated by a 𝛿-function, i.e., it is extremely short and has a flat phase, 

𝐼SF(𝑡)~𝐼Sig(𝑡) holds and XCorr produces a scaled copy of the signal to be measured. The flatness 

of the phase is often given for laser pulses, or it can be enforced by pulse compression 

techniques, as discussed in Section 2.2. However, the signal pulse is often not sort enough for 

this approximation to hold. In particular in the anomalous dispersion regime [Agr01] pulses tend 

to contract into solitons [Has73, Mol80], such that the signal often has features that are shorter 

than the input pulse. In this situation the resulting XCorr still gives a good impression of the 

overall properties of the signal but all features are averaged over the duration of the gate. 

 
Fig. 9: Schematic representation of iXCorr setup. The reference pulse (green) with delay 𝑡 
gates an unknown signal pulse (red) generating sum-frequency in a 𝜒(2)-crystal (BBO), which 
is imaged on a camera.  

Extension of the technique to ST analysis is fairly straightforward; a scheme of the setup is 

depicted in Fig. 9. The signal under investigation is imaged onto the spatially extended 𝜒(2)-

crystal. The gate pulse is transmitted through the nonlinear crystal in a collimated manner. The 

SF field is then imaged onto a camera, the spatially resolved slow detector. The method is thus 

named imaging XCorr (iXCorr). The SF field is then defined as 

 ( ) ( ) ( )SF Sig Gate, , , , dI x y t I x y I tt t t∝ −∫ , (9) 

where we have additionally assumed that the gate pulse has an arbitrarily narrow spatial 
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spectrum and that the up-conversion process in the 𝜒(2) crystal has a sufficiently broad 

acceptance angle range to convert all angular components of the signal with equal strength 

[Min03, Pot04, Min09b]. While the first two requirements can be fulfilled simultaneously with 

sufficiently enlarged reference pulses, the last can be fulfilled by using a very thin 𝜒(2)-crystal. 

All experiments discussed in Chapter 5, where iXCorr is employed, make use of the double-

beamline facility discussed in Section 2.1. The sum frequency generation is carried out in a 

25 µm thin BBO crystal of 5 mm diameter that is cut and oriented for sum-frequency generation 

of the 800 nm and the 1550 nm beam line under normal incidence. The usage of distinct 

wavelengths for the process allows us to adjust the setup collinearly, whilst maintaining freedom 

from background and interference fringes. The resulting SF light’s central wavelength is in the 

range of 450 nm < λSF < 600 nm, which is helpful because CCD cameras have their sensitivity 

maximum in this range.  It is also sufficiently well separated from the wavelength of the signal, 

the gate and their respective higher harmonics, such that they can be easily removed with colored 

glass filters and thus do not obstruct the measurement of the SF field. 

The delay 𝑡 is controlled by a pair of mirrors mounted on a linear motion stage, which is scanned 

over 300 µm in steps of 1 µm. A CCD camera records the SF light, while the stage is scanned at 

constant speed. Exposure time and scan speed are thus linked. Using this in-motion recording, 

measurement times are reduced to a minimum, typically in the order of 20 seconds for 300 

frames, which mitigates the impact of slow laser power fluctuations. The temporal resolution is 

𝛿𝑡 = 6.7 fs resulting in a measurement window of Δ𝑡 = 2 ps. Using a spatial resolution of 1 

Megapixel and an imaging depth of 16 bits this equates into a data rate of 250 Mbit/s. This is at 

the limit of contemporary office type computers’ data processing capabilities. Therefore, we do 

not expect a significant further increase in the measurement speed in the near future, unless 

sophisticated signal processing platforms are introduced. 

The role of reference and signal is interchangeable between the two beam lines. The experiments 

discussed in Sections 5.2, 5.3, and 5.4 have been carried out with the 1550 nm OPA pulse as the 

signal and 800 nm CPA as the gate, whereas the situation is vice versa in Section 5.1. We could 

achieve a resolution of 50 − 70 fs in the experiments discussed in Section 5.2, when no SPS was 

installed and a less advanced CPA system was used. In the later experiments of Sections 5.3 and 

5.4 a resolution of 30 − 40 fs was achieved. Resolutions of less than 20 fs are expected in the 

future, with the coherent spectral broadening stage introduced in Section 2.2.4. When the 

1550 nm is used as the gate a resolution of 50 fs can be achieved. 
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3.2 Imaging Cross Correlating FROG: Seeing Details 

If full retrieval of the optical field including the reconstruction of the optical phase and gate 

deconvolution is necessary, an improvement of iXCorr must be considered. This is particularly 

true for experiments involving femtosecond dynamics of solitary waves or their ST counterparts, 

Light Bullets (LBs). In those cases deconvolution and phase retrieval is essential. However, 

during the last decade a whole “zoo” [Akt10] of ST phase retrieval methods has evolved. 

Methods based on interference, such as SEA-TADPOLE [Bow06], STRIPED FISH [Gab04, 

Gab06], STARFISH [Alo10, Alo12b, Alo12a], and various subwavelength techniques [Eng07, 

Bal01, Bow08], are very sensitive but require full spectral overlap of the signal and reference, 

making them incompatible with the above described dual beamline setup. 

 
Fig. 10: Schematic representation of ImXFROG setup. The reference pulse (green) with delay 𝑡 
gates an unknown signal (red) generating sum-frequency in a 𝜒(2)-crystal. Only a certain 
wavelength 𝜆 (dark blue) of the sum-frequency pulse (light blue) passes a spectral filter and is 
imaged on a CCD. The filter (inset) consists of two mirrors forming a tunable Fabry-Perot-
Interferometer. Cross-polarized white light and a spectrometer form a feedback loop, tuning 
mirror parallelity and transmitted wavelength. Figure adapted from [Eil13a].  

Methods based on nonlinear interaction are not limited in this way. We therefore focused on the 

implementations of an ST generalization of a nonlinear temporal phase retrieval technique, such 

as SPIDER [Iac98], SEA-SPIDER [Kos05], the FROG family [Tre02], or MIIPS [Loz04]. Either 

of these methods can be used to stitch spectrally resolved spatial phase measurement techniques. 

There the spatial phase is determined for each wavelength up to an unknown phase, which is 

then fixed by the above mentioned technique. This strategy was demonstrated by the 

SHACKLED FROG [Rub09, Bon09] and HAMSTER [Cou12] experiments. Another route 

towards ST retrieval, pursued in this work, is the spatial multiplexing of temporal phase retrieval 
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techniques using some imaging scheme. This route was demonstrated before using spatially 

resolved shearing interferometry [Dor02b, Dor02a], CROAKS [Bra08], spatial SPIDER [Gal01] 

and spatial SEA-SPIDER [Wya06]. These techniques are, however, 1D space multiplexed and 

thus limited to ST pulses with cylindrical symmetry or independent variation along a single 

transverse dimension. 

During the course of this work we developed imaging cross-correlation frequency-resolved 

optical gating (ImXFROG) [Eil13a]. It is a nonlinear, ultrafast, spatiotemporal pulse-retrieval 

technique, based on a combination of an imaging cross-correlator [Min10a, Pot04, Min03] with a 

Cross-Correlation FROG (XFROG) technique [Lin98]. A scheme of the setup is displayed in Fig. 

10. It is designed as a plug-and-play upgrade to iXCorr, which allows us to select iXCorr or 

ImXFROG in a tradeoff between the desired depth of information and measurement time. The 

idea is as follows: a tunable spectral filter that only transmits a certain wavelength 𝜆 = 2𝜋𝑐ph/𝜔 

is placed between the nonlinear crystal and the CCD. Then a cross correlation is recorded for 

each wavelength, yielding the four dimensional dataset 

 ( ) ( )
2

iXFROG
SF Sig Gate( , , , ) , , exp( )dI x y t A x y A t iω t t ωt t∝ − −∫ , (10) 

which represents an independent XFROG trace for each position (𝑥,𝑦). Each of these traces can 

be retrieved using a generalized projections technique [Tre02], yielding the sought after complex 

ST field 𝐸(𝑥,𝑦, 𝑡)exp (𝑖ϕ�(𝑥,𝑦)) except for an unknown spatial phase ϕ�(𝑥,𝑦). This unknown 

phase can be determined at a certain delay 𝑡 = 𝑡stitch. It could, e.g. be retrieved in a single 

separate measurement, using, e.g., a Shack-Hartman sensor [Pla01].  Reconstruction from a 

second measurement in a different propagation plane in a scheme called phase-diversity [Bow12] 

has also been demonstrated. Phase-diversity reconstruction is an ST generalization of the classic 

defocus variation technique [All01] based on the Gerchberg-Saxton approach [Ger72]. Any other 

digital holography technique, e.g. techniques based on shadowgraphy [Eil12] or the solution of 

the transport of intensity equation [Tea82] could be used, too. Implementation into ImXFROG 

will remain subject for future work. 

At the heart of ImXFROG is the tunable spectral filter. Its properties, i.e., its spectral resolution 

𝛿𝜆 and the free spectral range (FSR) Δ𝜆, are determined by the desired length of the 

measurement window Δ𝑡 and the temporal resolution 𝛿𝑡: 
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where 𝜆SF = 527 nm is the average SF wavelength. ImXFROG was designed to analyze 

wavepackets that emerge from ST, nonlinear experiments in fiber arrays. The resolution 𝛿𝑡 must 

therefore be selected to be smaller the characteristic pulse duration 𝑡0. The meaning of 𝑡0 will be 

discussed in Chapter 4, however for the samples used in this thesis the minimal value is 

𝑡0 = 18 fs, as stated in Tab. 1 on page 45. Therefore 𝛿𝑡 = 9 fs was chosen. A measurement 

window of Δ𝑡 = 900 fs was selected, because simulations, such as those that will be presented in 

Chapter 5, suggest that ST wavepackets emerging from experiments in fiber arrays typically span 

over a few hundred femtoseconds. 

These requirements equate into a filter resolution of 𝛿𝜆 = 1 nm, and an FSR of Δ𝜆 = 100 nm, 

yielding a finesse of 𝐹∗ = Δ𝜆
𝛿𝜆� = 100, leading to a measurement window of 1300 nm <

𝜆Sig < 2400 nm. The temporal resolution is as short as two optical cycles, if the 800 nm beam 

line is used as the gate function. The number of independently measurable points, termed 

temporal degrees of freedom DoF𝑡 = 𝐹∗ = 100 might seem moderate at first, however one has 

to keep in mind that ImXFROG reconstructs one temporal trace for each spatial pixel. Therefore 

the total number of degrees of freedom DoF = DoF𝑥 DoF𝑦 DoF𝑡 , where DoF𝑥/𝑦 are the number 

of degrees of freedom per spatial dimension, is very high. The introduction of a spatial resolution 

imposes further restraints on the spectral filter, namely that it must have a diameter and angular 

acceptance range that is compatible with the sought after spatial resolution. 

The spectral filter with the desired parameters was implemented using a combination of 10 nm 

commercial interference filters ranging from 500 nm to 600 nm and a tunable Fabry-Perot-

Interferometer (FPI), constructed from two parallel mirrors with 85% reflectivity over the same 

spectral range, giving a finesse of 𝐹FPI
∗ = Δ𝜆

𝛿𝜆� = 20. The FPI is operated in the 25th order, 

corresponding to a mirror separation of 7 µm. This leads to a spectral resolution of 𝛿𝜆 = 1 nm 

and a FSR Δ𝜆FPI = 20 nm. This combination of interference filters and an FPI reaches the total 

spectral resolution, FSR, and finesse as stated above. The mirrors are mounted on a one piece 

mount to mitigate effects from vibration and temperature variation. One end mirror is installed 

on a three-axis piezo-mount. Feedback is supplied by monitoring the transmission of cross-

polarized white light through the FPI, with the help of a spectrometer. Piston motion is then used 

to set the transmitted wavelength, whereas pitch and roll are continuously adjusted to guarantee 

maximum mirror parallelity and thus contrast in the transmitted spectrum. 

The accepted half-angle is approximated as an angle 𝜃 under which the transmitted wavelength 

shifts by 𝛿𝜆/2 and equates to 𝜃 = (2𝐹FPI
∗ )−1/2 ≈ 1.8 deg. This angle is related to a cut-off in the 

angular spectrum of Δ𝑘 ≈ 2𝜋𝜃/𝜆SF. The finite diameter 𝐷 = 5 mm imposed by mechanical 
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constraints of the setup gives a lower boundary on the angular resolution 𝛿𝑘 = 2𝜋/𝐷, such that 

the spatial DoF𝑥 and the total number of independent points DoF are given by: 

 
2 *

7
/ * *
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2 2DoF 300 DoF DoFDoF DoF 10 .x y t x y
D D F

F Fλ λ
 = ≈ = = ≈ 
 

 (12) 

This should be put into perspective with other ST retrieval techniques, however few such 

numbers have been reported in the literature, so far. The authors of STRIPED FISH [Gab06] 

reported DoF = 105, which means that ImXFROG is a method that is suitable to resolve 

particularly complex ST pulses at the price of long measurement times.  

Eq. (12) is also interesting from a fundamental point of view. As 𝐹∗/𝐹FPI
∗  is just a little larger 

than unity we can approximate DoF ≈ 2(𝐷 𝜆⁄ )2. This means that the DoF is not influenced by 

the specific design of the spectral filter. The spectral filter just transfers spatial degrees of 

freedom into temporal ones. While this result has been obtained for the specific design described 

above, we would like to note that [Gab06] reported a similar finding, without discussing it 

further. We therefore would like to hypothesize that this is a fundamental limit of ST retrieval 

techniques. 

ImXFROG’s capability to retrieve and resolve ultrashort events is demonstrated in Section 5.2 in 

the context of LBs. Here we focus on demonstrating ImXFROG’s ability to reconstruct ultra-

complex ST fields. We have therefore analyzed a spatiotemporal Airy pulse. The pulse has a 

transform limited minimum duration of 30 fs, upon which we impose a third order chirp (TOC) 

of 27 ∙ 103fs3 , using the SPS setup discussed in Section 2.2 but without the aberration 

mitigation scheme discussed in Section 2.2.3. The pulse thus has a high degree of imaging 

aberrations introduced and also undergoes nonlinear reshaping. 

Experimental results are displayed in Fig. 11. Fig. 11(a) shows an isointensity map of the ST 

pulse. The pulse-front with the trailing ripples that are characteristic for Airy pulses, are both 

immediately visible. Although the ripples are less than 25 fs short and thus shorter than the gate 

pulse they are fully resolved. Fig. 11(b) shows the locally resolved level of TOC. A considerable 

variation of the TOC over the pulse cross section is visible. In particular the TOC at the spatial 

boundary of the pulse is smaller than in the center. Its mean value is 20 ± 5 ∙ 103fs3. We 

attribute this deviation to some undetected initial TOC of −7 ± 5 ∙ 103fs3. 

Fig. 11(c)-Fig. 11(e) give a good understanding of the spatiotemporal distortions the pulse 

suffers in the non-optimized SPS setup. The pulse is considerably smaller in x-direction, than in 

y-direction, with some level of redshift in the center of the pulse, as displayed in Fig. 11(c). The 

center of the pulse precedes the pulse fringes, as seen in Fig. 11(d). We attribute this pulse front 
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bending to the greater bandwidth at the center seen in Fig. 11(e) and the interaction of the 

spectrum with TOC. 

 
Fig. 11: ImXFROG reconstruction of an Airy pulse with spatiotemporal distortions. (a) 
Spatiotemporal isointensity plot. (b) Local third order chirp. (c) Local mean wavelength. (d) 
Local mean time of arrival. (e) Local width of the spectrum. (b-e) The white outlines mark the 
region containing 90% of the pulse energy; Black regions denote areas with insufficient power 
for pulse retrieval. Figure adapted from [Eil13a].  

While this clearly demonstrates the capabilities of ImXFROG we must note at this point that this 

method is extremely demanding in terms of the experimental prerequisites and infrastructure. 

Measurement times are currently in the order of two hours; with a potential reduction to 30-60 

minutes. During this time roughly 10 gigabytes of data are generated that need about 2 to 6 hours 

of data processing for the FROG reconstruction; reduction potential here is larger: using 

improved algorithms, GPU computing and parallelization we expect this number to drop below 

thirty minutes. Given that this potential is fully harnessed ImXFROG will become much more 

usable in the future but will remain an expert tool for in-depth studies of details of ST processes. 

For quick overviews or continuous monitoring iXCorr will remain the method of choice; 

however switching between the two modes of operation is as simple as removing the FPI mirrors 

from the setup and resetting the command and control software. 

In summary in this section we have demonstrated ImXFROG, a technique that is able to fully 

reconstruct ST fields, except for an unknown spatial phase, which can be found in a reference 

experiment. ImXFROG is able to resolve few-cycle pulse features and is among all nonlinear 

phase retrieval methods the one which can reconstruct ST fields with the largest complexity, i.e., 

it has the highest published value for DoF = 107. It is based on a plug-and-play extension of the 

iXCorr technique, which is particularly handy for the experimentalist, as it makes switching 

between a “quick-and-dirty” and a “slow-and-in-depth” ST retrieval technique possible within 
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minutes. 

3.3 1D Imaging Cross Correlating FROG: Fast and Accurate 

With the demonstration of the ImXFROG technique in the last section there is, at least in the 

framework of this thesis, no need to develop ST retrieval techniques any further, as we now can 

retrieve the complete information from an ST pulse. In many situations, however, the system 

under investigation contains symmetries, which make complete analysis techniques highly 

redundant. Among the most prominent are systems with cylindrical symmetry, which often 

emerge from ST experiments in homogeneous media, and 1D systems, such as slab WGs and 

WAs. These systems only have a single transverse spatial dimension, e.g., the position in the 1D 

case and the radial coordinate for the cylindrical case, as discussed in Section 3.2. This 

coordinate is referred to as 𝑥. 

The absence of a 2nd  transverse spatial coordinate opens the possibility to use the 2nd dimension 

of the camera for the recording of the spectrum, eliminating the need for an external wavelength 

filter and time-consuming, independent scanning of the delay and wavelength axes. This 

facilitates a device that, by sacrificing the 2nd  spatial dimension, allows FROG reconstruction of 

a 1D-ST signal at the speed of an iXCorr measurement. This device, called fast One dimensional 

imaging Cross-correlating FROG (OXFROG), was developed during this thesis and has 

successfully undergone characterization and first trials. 

 
Fig. 12: (a) Schematic representation of the OXFROG setup. The reference pulse (green) with 
delay 𝑡 gates an unknown signal (red) generating SF in a 𝜒(2)-crystal. The SF  pulse is 
dispersed along the horizontal axis. A horizontal, cylindrical, focusing lens images the 
spectrum on a CCD. A vertically curved cylindrical lens images the field on the vertical 
direction on the CCD, yielding spatial information. (b) Example of a pulse, which was 
retrieved at one given point in space, using the OXFROG technique. (blue) Instantaneous pulse 
power. (green) Retrieved pulse phase. The pulse FWHM duration is 284 fs with a chirp of 
13 ⋅ 103fs2.  

After removing the FPI from the ImXFROG we had to redesign the imaging setup between the 

𝜒(2)-crystal and the CCD. Along the 𝑥-axis we are imaging onto the CCD with a cylindrical lens 

of 𝑓 = 100 mm with a 1: 1 imaging arrangement. Along the 𝑦-axis an 𝑓 = 150 mm cylindrical 

collimator lens routes the light through a transmission grating with 150 lines/mm in a Littrow 
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setup. A focusing lens with 𝑓 = 60 mm in a 2𝑓 setup then images the spectrum onto the CCD. 

The device was simulated in an optical design software prior to implementation, ensuring that 

the relatively simple arrangement achieves transform limited performance over the full SF 

spectral range of 500 nm < 𝜆 < 600 nm. The optical system was built on a custom, one-piece 

mount, reducing adjustment degrees of freedom to a minimum. The system’s dispersion was then 

calibrated with a collimated Xenon light source; resolution was tested with a laser source to be 

𝛿𝜆 = 0.35 nm, which is within 10% of the transform limit and three times better than the design 

value for the minimum spectral resolution of the FROG scheme, discussed in Eq. (11). 

A proof of principle demonstration of the OXFROG setup was done with the 1550 nm pulse as 

the gate and a chirped 800 nm pulse as the unknown signal. Data analysis was carried out only 

in one selected point in space. Results are displayed in Fig. 12(b). The measured FWHM of the 

signal was 284 fs, with a chirp of 13 ⋅ 103fs2, which equates into an FWHM of just below 40 fs, 

consistent with previously determined values for the laser. The measurement took less than 20 s. 

After this demonstration the OXFROG setup is scheduled to be used for the ST analysis 

nonlinear pulse propagation in 1D waveguide arrays (WAs) [Nol03]. Nonlinear experiments in 

these arrays are routinely carried out but experimental ST analysis lacks behind. Analytic 

description on the other hand often ignores the temporal degrees of freedom altogether [Chr03, 

Led08, Kar11]. We therefore aim to develop OXFROG into the new “gold standard” for ST 

analysis of WAs.  

3.4 Outlook: Analysis by Control 

Up to now we have followed the established approach, which clearly separates the “realms” of 

ST pulse generation and ST analysis. In this section, however, we would like to lift this 

separation and show that in many situations careful mixing of the two seemingly distinct parts of 

the experiment can be helpful. We therefore term the concept Analysis-by-Control (AbC). 

The idea is based on the assumption that the action of each stage in a (linear, time invariant) 

optical experiment, can be described by a filter function [Phi95] according to the definition of 

Eq. (7). Thus  

 ( ) ( ) ( ) ( ) ( ) ( )0
end , , , , , , , , , ,x y m x y x y m x y x y

m m

E k k A k k B k k S k k E k kω ω ω ω ω= ⋅ ⋅ ⋅∏ ∏ , (13) 

where 𝑆𝑚 describes the effect of the various pulse shaping stages, 𝐵 of the experiment itself, and 

𝐴𝑚 of the pulse analysis devices. Because the product operation is commutative it does not 

matter in which order the operation is carried out; i.e., how the experiment is laid out [Phi95]. To 

give an example: it does not matter if a pulse is delayed before or after an experiment, nor does it 
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matter if a delayed copy of a pulse for the purpose of autocorrelation is created before or after 

the experiment. One can therefore cumulate all (or at least many) optical elements of the 

experiment into a single filter 𝐹 = ∏𝑆𝑚 ⋅∏𝐴𝑚 

 ( ) ( ) ( ) ( ) ( )0
end , , , , , , , ,x y x y x y x yE k k B k k F k k E k kω ω ω ω= ⋅ ⋅ . (14) 

Of course this is only possible for linear experiments; nonlinear ST experiments thwart this 

scheme, as Eq. (13) is not valid there.  

In our case the only device which is flexible enough to cumulate arbitrary optical elements and is 

thus truly suitable for AbC is the SPS, which is originally a pulse control element and can now 

be used for analysis, too. To put matters into perspective: AbC is by no means a replacement for 

existing ST analysis techniques, such as those presented above. Its strength lies in the flexibility 

to mimic setups by simply applying the appropriate phase/amplitude function onto the SPS, 

without the need to physically build the setup. 

 
Fig. 13: Analysis of an ST pulse using the AbC scheme. (a-c) The SPS was programmed to 
mimic a pulse copy & delay line. A 𝜒(2)-crystal and a CCD camera were then used to record 
the spatially resolved autocorrelation. (a) Spatially resolved second harmonic intensity with 
(white lines) lines of equal autocorrelation FWHM duration superimposed. (b,c) 
Autocorrelations recorded by the AbC scheme for the points denoted with the arrow. (d) 
Locally resolved pulse chirp. 

For example the SPS can be used to mimic a Michelson interferometer type pulse “copy & 

delay” stage, by applying the filter 𝐹(𝜔) = 1
2� cos(𝑡𝜔). Building an autocorrelator is then as 

simple as placing an appropriate 𝜒(2)-crystal and an SH detector in the beam path and varying 

the delay 𝑡. This setup was in fact used to characterize imaging aberrations of the original, non-

optimized SPS setup. Some results are shown in Fig. 13(a-c). 

In another example AbC was used to measure the locally resolved chirp, the results of which are 

displayed in Fig. 13(d). Here the same setup was used but a variable chirp 𝐶 was applied 

according to F(𝜔) = exp�𝑖 2� 𝐶𝜔2� . Then for each camera pixel chirp 𝐶max, which generates 

maximum second harmonic was recorded. The initial local chirp is then simply −𝐶max. A result 

is displayed in Fig. 13(a-d), which shows that the pulse has a chirp that varies considerably over 



3.4 Outlook: Analysis by Control 

 33 of 99 

its cross section. 

Setting up these two experiments did not take much longer than programming the SPS and yet 

proved crucial in characterizing and optimizing the ST properties of the SPS setup. Given the 

ease, with which these results have been obtained, it seems that AbC is a technique that readily 

lends itself for rapid prototyping, testing, and characterization of experiments. During the course 

of this thesis we demonstrated that AbC has the potential to change the way in which 

experiments are developed; reducing development time and space requirement, while increasing 

accuracy and reproducibility. In the current stage of development using SPS only the temporal 

part of the AbC scheme, presented in Eq. (14), is implemented. Future combination with 

complete ST shaping techniques, as presented in Section 2.4, will harness the power of the AbC 

approach to the fullest. 
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 Ultrafast Discrete Optics: Samples, Scales & Models 4.
This chapter will introduce the class of samples used in this thesis and the physical effects to be 

expected when ultrafast, high-power ST pulses propagate through them. As such it complements 

the last two chapters in the quest for the observation of discrete Light Bullets. It focuses on the 

optical environments in which Light Bullets can be observed and the physical effects they are 

subject to. It derives typical properties of the Light Bullets, and introduces two complementary 

models, which can are used for the qualitative understanding of Light Bullets and their dynamic 

mechanisms and for quantitative prediction of the state and evolution of the optical field inside 

the samples used in the experiment. 

A brief overview over the development of the field of nonlinear optics in discrete media in 

general and its role in the hunt for the Light Bullets in particular is given in Section 4.1. Then the 

canonical model of ST discrete optics (DO), the discrete-continuous Schrödinger equation, will 

be introduced in Section 4.2 and its usefulness in terms of predicting experiments will be 

critically examined. We will then argue that it is useful in a qualitative sense, as it is a minimal 

model that captures the basic principles of ST DO. Its results will be applied on experimental 

samples introduced Section 4.3, yielding typical temporal, spatial, and energetic scales, on which 

Light Bullets can be observed. 

Following these predictions we will argue that the canonical model ignores a range of high order 

perturbations, which do not alter the characteristics of the system altogether, but drastically 

modify its quantitative behavior. Thus a complete model will be introduced in Section 4.4, which 

captures all physical effects that have a considerable impact on ST DO. This model has 

quantitative predicting power and will later be used extensively to verify experimental findings. 

The chapter is concluded by Section 4.5, which reviews all classes of physical effects, that are 

expected to occur during the excitation and propagation of LBs and their relative impact in 

various stages of the experiment. 

4.1 Nonlinear, Spatiotemporal, Discrete Optics: a Brief Introduction 

The experiments discussed here are carried out in DO environments, a special subclass of 

photonic crystals (PCs). DO environments are characterized by a periodic modulation of the 

refractive index 𝑛(𝑥) in a direction transverse to the main direction of propagation. The index 

along the direction of propagation 𝑧 is mostly homogeneous, although deviations from this part 

of the definition are possible. They come in 1D or (2D) versions, depending on if the periodicity 

stretches along both transverse directions 𝑥 and 𝑦, or not. Waves in 1D DO systems are 
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prototypically assumed to be confined along the other transverse direction by some guiding 

mechanism (e.g. slab-waveguiding in the 𝑦-direction). Moreover, DO systems differ from 

generic PCs in that each unit cell can be considered a single- or few- [Set10, Set11c] mode WG. 

The impact of all other unit cells is then limited to a perturbative modification of the mode 

amplitude dynamics 𝐴𝑛𝑚(𝑧) of the WG with the 2D index 𝑛𝑛 by the nearest neighbors only. 

This approach is referred to as tight-binding-approximation [Kos54]. The leading term of the 

perturbation series is a resonant coupling term, such that DO systems can be thought of as 

infinite (or at least large) 1D or 2D arrays of WG couplers [Jon65]. They are hence called 

waveguide arrays (WA). 

The linear propagation equation in frequency domain then reads: 
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 (15) 

where 𝛽 is the wavenumber of the isolated WG mode [Agr01], 𝜔 = 2𝜋𝑐ph /𝜆 is the angular 

frequency of light with the vacuum wavelength 𝜆 and 𝑐ph is the vacuum speed of light. The 

coupling constants 𝑐(𝑖) are calculated by an overlap integral of the modal field of a WG, with the 

refractive index change of the respective nearest neighbor [Sny83]. Their relations depend on the 

geometry of the array [Sza06a]. One dimensional arrays, displayed in Fig. 14(a), have 

𝑐(2) = 𝑐(3) = 𝑐(4) = 0 and the 𝑛 index is consequently ignored. Rectangular arrays, displayed 

in Fig. 14(b),  have 𝑐(1) = 𝑐(2) ≫ 𝑐(3) = 𝑐(4), where 𝑐(1) models straight connections to the 

nearest neighbors and 𝑐(3) models diagonal connections to next-to-nearest neighbors. Hexagonal 

arrays, displayed in Fig. 14(c),  have 𝑐(1) = 𝑐(2) = 𝑐(3) and 𝑐(4) = 0. If a single coefficient is 

sufficient to describe the system, as is the case for 1D and hexagonal arrays, it is just called 𝑐. 

Equation (15) can be simplified if the slowly varying envelope approximation (SVEA) is 

adopted, chromatic variation of the coupling constants is neglected, a co-moving reference frame 

is introduced, and the wavenumber is expanded into a truncated Taylor series 𝛽(𝜔) ≈ 𝛽0 +

𝛽1(𝜔 − 𝜔0) + 𝛽2
2� (𝜔 − 𝜔0)2, such that:  
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where we have, without loss of generality, adopted the notation for a hexagonal array as this 
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geometry is the one that is most used in this thesis.  

 
Fig. 14: Transverse layout and coupling geometries of several WA classes. (a) A 1D WA. (b) A 
2D rectangular WA with nearest-neighbor and next-to-nearest-neighbor coupling. (c) A 2D 
hexagonal WA. Dotted lines denote continuation of the array. 

Historically DO was first discussed in the context of continuous waves, i.e., in Eq. (16) with 

𝛽2 = 0. Then DO is a matter of spatially coupled wave propagation. The dispersion relation 

(DR) of the discrete coupling operator is Δ𝛽 = 2𝑐(cos(𝜈) + cos(𝜇) + cos(ν + µ)), where 𝜈 and 

𝜇 are the normalized transverse wavevector components (i.e. the Bloch-momenta) and Δ𝛽 is the 

wavenumber shift induced by the WA. If compared with the (paraxial) free space DR one finds 

that in the center of the Brillouin zone the DO DR can be fitted to the free space DR. The 

discrete coupling process is therefore called discrete diffraction. As opposed to free space the DO 

DR also exhibits pronounced minima at its corners, corresponding to anomalous diffraction. 

Discrete diffraction can therefore mimic normal and anomalous diffraction (and everything in 

between), depending on the transverse wavevector, which can be tuned by varying the excitation 

angle [Per02]. Careful modification of transverse and/or longitudinal structures and symmetries 

of the system has led to the demonstration of a plethora of effects, many of which have originally 

been predicted and described for other discrete systems. A full account [Sza10] of these is 

beyond the scope of this thesis. Nevertheless, we like to mention a few results, e.g., the 

demonstration of Bloch Oscillations and Zener tunneling [Blo29, Zen34, Pes98, Mor99a, Per99, 

Tro06], Anderson localization [And58, Per04a, Sch07, Lah08, Jov11b, Jov11a, Jov12b, Jov12c, 

Jov12a], dynamic localization [Dun86, Lon06, Sza09], 𝒫𝒫-symmetries [Ben98, EG07, Mak08, 

Rüt10, Mak10, Suk10, Sza11, Jov12c],  topological insulation [Kan05, Zha05, Rec13], and 

pseudo-magnetic optics [Rec12]. 

In this thesis we are interested in nonlinear optics in WAs [Chr03, Led08, Kar11]. We focus on 

the regime of weak nonlinearity, where the impact of the nonlinearity is assumed to be 

sufficiently weak that it can be considered as a perturbation of the evolution equation Eq. (16) 
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and then reads: 

 ( ) ( ) ( ), , ,nm nm nmi A z t A z t A z t
z
∂

= +   ∂
A  , (17) 

where the linear operator ℒ is the right hand side of Eq. (16) or any linear modification thereof. 

𝒩 is the nonlinear perturbation. Note that “weak” means weak if compared with the 

waveguiding, i.e., it can still be strong, if compared with discrete diffraction. Effects based on 

strong nonlinearities such as wave collapse phenomena [Akh68, She76, Ber98, Sku04, Eil10], 

triggered by the instability of the Townes soliton [Chi64] are therefore ignored in this thesis. 

Depending on the host material and experimental configuration, 𝒩 can describe virtually any 

nonlinear interaction [But90, Boy03], such as, parametric interactions, nonlinear absorption, and 

resonant nonlinearities. Here we focus on effects that arise from the 𝜒(3) interaction or, more 

specifically, the Kerr-effect, together with leading higher order perturbations, such as the 

stimulated Raman response and self-steepening effects [Agr01]. 

WAs in 𝜒(3) media, i.e. those with Kerr nonlinearity, are particularly interesting in the context of 

discrete [Led08, Kar11] optical solitons [Abl91, Kiv03]. Here the existence of certain classes of 

solitons is linked to the combination of the type of nonlinearity (e.g. focusing or defocussing) 

and the shape of the dispersion relation, i.e., sign of diffraction. While the type of nonlinearity is 

fixed for many experimental environments, WAs offer the freedom to select a type of diffraction 

and thus offer ideal conditions to observe rich soliton dynamics. In fact discrete solitons [Eis02, 

Pes02, Led02, Led08, Kar11] in 1D WAs were first predicted by Christodoulides and Aceves 

[Chr88] and observed by Eisenberg et al. [Eis98]. Later experiments demonstrated discrete 

solitons in cascaded 𝜒(2)-WAs [Iwa04]. The interchangeable diffraction sign also allows to 

observe dark discrete solitons [Kiv94a, Kob98, Mor01]. More elaborated schemes investigated, 

e.g., discrete vector solitons [Dar98, Mei03, Mei05a] or the discrete counterpart of gap solitons 

[Che87, Egg96, Mil87], by either exploiting the gap between coupled fundamental modes and 

coupled high order modes or by inducing a gap by inscribing a pairwise alternating lattice 

[Kiv93a, Suk02, Suk03b, Des03, Mor04, Man04a, Che05, Ros06]. 

Discrete solitons are themselves subject to modulational instability [Kiv92, Dar97, Mei04a, 

Bel04]. Because of their discrete nature, discrete solitons are really “just” solitary waves as they 

lack a sufficient number of conserved quantities. This has two interesting consequences. Their 

transverse motion is affected by the Peierls-Nabarro potential [Kiv93b, Ace94, Mor99b] and 

their coherent interaction dynamics is very rich [Ace96, Kró96, Mei04b, Mei05b]. The discrete 

soliton may also be used as a “blocker” to transiently reflect a probe beam via incoherent 
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interaction, which was discussed in the context of all-optical switching [Chr01, Eug01, Mei04b, 

Mei05c, Mei05b]. The interaction of a discrete soliton with a perturbation in the array is also of 

interest [Pes99].  

Two-dimensional discrete solitons, which are stable against perturbation, as opposed to their 

continuous counterparts [Chi64], were predicted [Efr02, Efr03] and experimentally observed in 

photo-induced WAs [Fle03b, Fle03a, Nes03], laser written WAs [Per04b, Sza06b], and fluid 

filled photonic crystal fibers [Vie12]. 

The stability of 2D discrete solitons extends to systems with reduced symmetry [Fre06, Fis06, 

Fre07]. Symmetry reduction can also be of geometric origin, i.e., inscribed in the properties of 

the DO environment, as is the case for surface solitons [Mak05, Mak06, Sun06, Wan07, Sza07b, 

Sun07, Hei09a] or it can be generated by non-symmetric excitation, e.g., in the case for vortex 

solitons [Fir97, DT00, Mal01, Nes04, Man04b, Des05a, Des05b, Bar05, Ter08, Ter09, Ter10]. 

ST optics in DO systems can be viewed, to some extent, as a straightforward generalization of 

purely spatial DO. A driving force behind the development of this branch of photonics was the 

seminal work [Sil90] by Silberberg, who pointed out, that solitary waves in homogeneous Kerr 

media are always unstable, if they have more than a single transverse dimension. He also coined 

the term Light Bullet for a ST field, in which the nonlinearity simultaneously balances dispersion 

and diffraction in both spatial dimensions. Discrete Light Bullets (LBs) do not suffer from this 

instability [Ace93, Tur93, Kiv94b, Led94, Mih04]. They inherit a sufficient amount of stability 

from their above discussed spatial cousins to have an appreciable parameter range in which they 

are linearily stable. The parameter range is, however, bounded: low intensity solutions with large 

diameters, i.e. those which extend over many WG of the WA, tend to behave like their instable, 

homogeneous cousins, whereas high intensity solutions eventually leave the weak nonlinearity 

regime and behave like homogeneous LBs, too [Eil10]. Similar results have been predicted for 

Bessel lattices [Mih05, Zho10], suggesting that a complete two-dimensional patterning of the 

waveguide array might not be needed altogether to get stable LBs. 

Stable,  discrete Light Bullets have also been predicted in Bragg grating WAs [Suk06], in arrays 

of helical WGs [Mat10], longitudinally modulated honeycomb WAs [Lob10], and at the edge 

[Mih07c, Mih07b] and interface [Mih07a] of WAs.  

Of course this is not only one method proposed to stabilize Light Bullets. Other strategies rely on 

unmodifiable intrinsic material properties, such as higher order dispersion [Fib04] and plasma 

effects [Ber98, Ber08], whereas the periodic modification of the refractive index is a property of 

the sample and can be modified to suit desired experimental parameters. Additional approaches 
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are currently unfeasible in an experiment, because they require the modulation of the nonlinear 

response [Tow02, Adh04, Tor09, Ye09], diffraction strength [Zho11], or the longitudinal 

modification of the WA [Bai03, Mih05, Bel08]. Other approaches weaken the concept of self-

confinement, such as LBs and LB trains based on non-instantaneous [Bur09, Gur09], saturable 

[Ska97], resonant [Leb10], or bi-valued [Edm92] nonlinearities. Spatiotemporal spin wave 

packets [Bau98, Büt00] experience linear loss, such that their collapse is arrested. So-called 

linear LBs [VL09, Cho10, Abd10, Pik12] are infinitely extended solutions of the linear 

Helmholtz equations and just preserve their intensity, not their phase. Their stationarity is also 

not based on a nonlinear effect. 

Experimental demonstration of any of these concepts lagged behind theoretical works [Wis02] in 

a considerable manner, prior to our work. Advances towards the observation of LBs had been 

made in 𝜒(2)-media. These are of interest because 𝜒(2)-nonlinearities can mimic the intensity-

dependent phase shift, which is at the heart of the Kerr effect, via slight mismatch cascading 

[Ost67, DeS92, Ste96, Bur02]. In 𝜒(2)-media LBs with two active spatial dimensions have been 

predicted to be stable [Skr98, Mih99, Pan05, Xu07] as opposed to those with orbital angular 

momentum [Mih00]. These LBs, however, require very particular properties for the fundamental 

and second harmonic waves and their mutual dispersive properties and have so far not been 

observed experimentally. However, two-color spatiotemporal solitons [Liu99, Bur02] had been 

observed with tilted pulses [Mar89, DT98]. Pulse tilting was required for group velocity 

matching of nonlinearly coupled harmonics, inducing a high level of effective anomalous 

dispersion, limiting this approach to a single transverse dimension. The tilted pulse technique can 

be generalized to another class of spatiotemporal, stationary wavepackets with two transverse 

dimensions, so-called X-waves. X-waves feature an angularly dispersed spatiotemporal spectrum 

with axial symmetry. X-waves can be spontaneously generated in 𝜒(2)-systems  [DT03, Tru04], 

or homogeneous [Cou03, Fac05], as well as, discrete [Con03, Kol04b, Dro05, Lah07, Jia07, 

Hei09b] 𝜒(3)-media. They are, however, weakly localized and theoretically of infinite energy. 

Other attempts at observing LBs, even in systems with lower dimension, presumably failed due 

to a lack of advanced analysis techniques [Eis01, Che03] or due to an excessive amount of 

spurious perturbative effects [Bab07, Ben08, Ben09, Gor10].  

During the course of this thesis we have been able to overcome all these difficulties. We were 

able to observe [Min10a] and characterize [Eil11a, Eil11b] LBs, as well as Vortex LBs [Eil13c] 

in fiber arrays (FAs) and also make contributions to the field of DO in WAs in general [Hei12]. 
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4.2 A Qualitative Propagation Model 

In the course of the thesis ST nonlinear wave propagation was investigated in WAs with 

instantaneous Kerr nonlinearity. Equation (17) then reads: 
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where |𝐴𝑛𝑚(𝑧, 𝑡)|2 is the instantaneous optical power in the WG with index 𝑛𝑛 and 𝛾 = 2𝜋
𝜆

𝑛2
𝐴eff 

 

is the nonlinear constant, which depends on the wavelength 𝜆, the material nonlinear refractive 

index 𝑛2 and the effective area 𝐴eff, which can be calculated from the shape ℱ(𝑥,𝑦) of the 

guided, isolated mode 𝐴eff = (∫|ℱ|2 d𝑥d𝑦)2/∫|ℱ|4 d𝑥d𝑦 [Agr01]. Equation (18) is referred to 

as the discrete-continuous, generalized, nonlinear Schrödinger equation (NLSE). Again the 

notation for a hexagonal WA has been adopted here, different geometries are discussed in 

Section 4.1. 

The NLSE describes (in the order of the appearance of the terms) the evolution of the 

instantaneous modal amplitude in the 𝑛𝑛𝑡ℎ WG, affected by dispersion, nonlinearity, and 

discrete diffraction. As such it is the minimal model describing nonlinear, ST wave propagation 

in WAs. We will later see that, although it is quite useless for quantitative predictions, it is still 

extremely instructive to study, as it gives a measure of physical insight, that goes beyond the 

mere solution of numerical models. In particular its stationary LB solutions can be tested against 

experimental and numerical data to verify their very existence. Moreover, its scaling properties, 

discussed below, immediately allow one to study the parameter regimes of ST propagation. 

For the purpose of analytically treating Eq. (18) it is useful and interesting to note that each of 

the free parameters is a mere parameter of scale, i.e., that it defines a characteristic granularity of 

the spatial and temporal axes and the typical power level of the system. More mathematically 

spoken Eq. (18) can be cast into an entirely dimensionless form: 
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where the dimensionless quantities are linked to their physical counterparts via 𝑡 = 𝑡0𝜏, 𝑧 = 𝑧0𝜁, 

and 𝐴𝑛𝑚 = 𝐴0𝑎𝑛𝑚, where the first two scaling coefficients are the array’s characteristic time 

𝑡0 = �|𝛽2|/𝑐  and length 𝑧0 = 𝑐−1, and the last coefficient 𝐴0 = �𝑐/𝛾 can be squared to yield 

the characteristic power 𝑃0 = 𝑐/𝛾. 𝐸0 = 𝑃0𝑡0 = �|𝛽2|𝑐/𝛾  is the characteristic pulse energy. The 
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sign in front of the dispersion term has to be chosen, such that it is negative for normal 

dispersion and positive otherwise. 

Solutions of Eq. (18) and Eq. (19) are sought after in two different manners. The evolution of 

any initial condition can be evaluated by direct numerical solution, e.g., with a 4th order Runge-

Kutta scheme [Kut01, But87] or, more efficiently, by using a split-step Fourier method [Har73, 

Fis73, Agr01]. 

LB solutions, which are characterized by their stationarity, are solved for using the ansatz 

𝑎𝑛𝑚(𝜁, 𝜏) = 𝑎�𝑛𝑚(𝜏) exp(𝑖𝑖𝜁), where 𝑖 is the so-called nonlinear phase shift, i.e., the 

nonlinearly induced offset of the longitudinal wavenumber. The resulting set of coupled 

differential equations are solved by turning it into a set of coupled ordinary equations by 

discretization along the 𝜏-coordinate. Here we used a Newton-Raphson scheme, which profits 

from the relative ease, with which the local Jacobian of the system of equations can be 

determined. A set of solutions for a range of nonlinear phase shifts 𝑖 can be determined, which is 

then termed a LB family. The stability of these solutions can be investigated by propagation, 

with the option of adding initial noise, by linear stability analysis, or in case of sufficiently 

simple solutions by application of the Vakhitov-Kolokolov theorem [Vak73]. 

All of the above mentioned solution methods for NLSE have been used at some point along with 

the experiments and respective results are discussed in Chapter 5. 

4.3 Propagation Environments 

Over the years a number of implementations for DO system have been proposed and 

demonstrated, the most prominent of which shall be briefly introduced here and discussed in the 

context of the usability for ST experiments. 

First experiments [Eis98] have been carried out in surface patterned Al𝑥Ga1−𝑥As arrays. They 

are of high quality but intrinsically limited to 1D structures. This limitation is shared by 

photovoltaic [Che05] and other 𝜒(2)-WAs [Iwa04, Iwa05b]. Some of which are, however, 

suitable for ST experiments [Set10, Set11b]. Discrete optics in nematic liquid crystal cells 

[Fra04] and coupled cavities [Pes04] is unsuitable for fast ST optics due to the slow system 

response. Induced optical lattices [Kró98b, Kró98c, Kró98a, Den99, Pet99, Efr02, Fle03a, 

Pet03a, Pet03b, Kró03, Des06] in photorefractive materials and infiltrated PCF arrays [Ros07, 

Vie12] partially overcome this limitation but do not exhibit the required level of regularity for 

the unambiguous observation of LBs. 

In this thesis we found femtosecond-written WAs [Nol03, Per04b] and fiber arrays [Röp07, 
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Röp11] most suitable for ST experiments in DO. Both have a high degree of regularity, well 

defined diffraction and dispersion properties, near-instantaneous nonlinear response, high power-

handling capability and low loss. The strength of fs-written WAs is their unparalleled degree of 

geometric flexibility. They are, however, not used for the investigation of LBs, because their 

linear and nonlinear response in the near infrared is largely unexplored. Fiber arrays (FAs) on the 

other hand are much less flexible. However, their linear and nonlinear properties over the 

complete transmission window of silica is extremely well understood due to the similarity of the 

individual WGs of the FAs to ordinary telecom fibers. Modelling of ST effects in FAs has a high 

level of sophistication and reliability. Both environments are briefly discussed below. 

4.3.1 Femtosecond Written Waveguide Arrays 

If a sufficiently powerful ultrashort laser pulse is focused on a transparent medium, the intensity 

in the focus can be so high that multi-photon absorption occurs [Boy03]. In turn this may result 

in plasma formation and optical material breakdown, leading to permanent modification of the 

material properties in the affected region in general. In particular this leads to a modification of 

the local refractive index. As the energy is deposited in a micron sized region only this region is 

modified. By moving the laser focus on an arbitrary trajectory through the material a three 

dimensional path of modified refractive index can be inscribed. If the refractive index 

modulation is positive, as is the case for silica samples, an optical WG is permanently written 

into the sample. Repetition of the process at different parallel paths through the sample leads to 

the fabrication of a WA. 

 
Fig. 15: Schematic representation of a segmented waveguide array. All light, which is coupled 
into the input WG leaves the array at the output WG, due to the staggered phase imprinted on 
the diffraction pattern in the middle of the array. Figure adapted from [Hei12]. 

The individual WGs do not necessarily have to be identical with respect to each other and may 

also change their properties along their length. For example, if the laser is periodically turned off 

during the writing process a segmented WG is produced, which, in first order approximation, has 

a different effective refractive index. Light propagating inside such a WG thus acquires a phase 

shift, with respect to light, which propagates in a non-segmented, otherwise identical, WG. If in 

a 1D WA every second WG is segmented in a way, that it acquires a 𝜋-phaseshift the effect of 

discrete diffraction can be completely undone [Lon08, Sza08] in a process very similar to phase 
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conjugation [Fis83]. For a sketch of such a structure see Fig. 15. A spatiotemporal, nonlinear 

experiment [Hei12] based on this concept has been evaluated in this thesis and is discussed in 

Section 5.1. The samples used in this experiment had a length of 100 mm, a coupling strength of 

𝑐 = 20.1 m−1, a nonlinearity coefficient of 𝛾 = 0.17 ⋅ 10−3/(mW) and a dispersion coefficient 

of 𝛽2 = 36 ⋅ 103fs2 m⁄  and have been operated at a carrier wavelength of 𝜆0 = 800 nm. 

4.3.2 Fiber Arrays 

A powerful approach for the fabrication of 2D WAs which are compatible for ST experiments is 

derived from the fabrication technology of Photonic Crystal Fibers (PCFs) [Rus03, Kni03]. The 

technology is, in fact, simpler: the air holes are replaced by rods with increased refractive index 

and the central defect is removed. Thus a very long 2D photonic crystal with small index 

modulation is created, a DO environment by the definition in Section 4.1. Such WAs are called 

fiber arrays (FAs). 

The fabrication technique itself is based on a stack and draw method. A high index rod of pure 

silica is placed in a depressed index tube made of fluorine doped silica glass. This choice ensured 

high homogeneity, without any considerable longitudinal or transversal variations of the material 

composition, in the WG and a high destruction threshold. The preform is then drawn and 

consolidated into a prefiber with a diameter of a few millimeters. Chemical vapor deposition 

techniques [Li85] have been used in earlier stages of the technology. The WG diameter of this 

prefiber is roughly one half of the outer diameter. The prefibers are then cut into pieces, sorted 

by size, stacked hexagonally and placed in a large jacketing tube, which is in turn drawn into the 

final FA with the desired diameter 𝐷.  

For the complete process a very high degree of accuracy is necessary, as discrete coupling is a 

resonant effect and phase accuracy of much less than 𝜋 in the up to 91 WGs of the FA has to be 

maintained over sample lengths of tens of centimeters, i.e., ~105 wavelengths. Therefore the 

complete process described above has to be designed to maintain this accuracy. Otherwise 

random perturbations dominate the propagation [Per04a]. Prefibers have to be selected to 

achieve a sample of identical diameters, prior to stacking. Further boundary rods have to be 

included to smoothen the transition between the hexagonal array stack and the circular jacketing 

tube. Details of the fabrication procedure are described in [Röp07, Röp11], a microscopic image 

of the FA is displayed in Fig. 16(a). Fig. 16(b) is an image of the light distribution at the end of 

the FA, which was excited in central WG. The FA length was several characteristic lengths and 

the regularity of the discrete diffraction patter underlines the regularity of the FA. 

Properties for individual WGs are typically chosen, such that they are similar to those in standard 
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telecom fibers. They are also operated in the telecom wavelength regime at a carrier wavelength 

of 𝜆0 = 1550 nm. The refractive index difference between core and cladding is fixed and 

determined by the material choice, here it is Δ𝑛 = 1.1 ∙ 10−3 or Δ𝑛 = 3.8 ∙ 10−3, depending on 

the sample. For both values Δ𝑛 ≪ 𝑛 holds. The dispersion properties of the WG are then 

basically fixed, as the impact of the material dispersion is much stronger than that of the 

geometric dispersion, due to the small index difference, as can be seen in Fig. 16 (g) and (j). The 

material dispersion is modelled using the Sellmeier equations [Mar72, Agr01]. At the design 

wavelength 𝜆 = 1550 nm the FAs dispersion is anomalous and has a typical value of 𝛽2 =

−27 ∙ 103fs2/mm [Mal65]. The material choice also fixes the nonlinear constant to 𝑛2 = 2.7 ∙

10−20m2/W [Agr01], which in turn determines the nonlinear coefficient 𝛾. The variation of the 

values of these coefficients for different wavelengths can be found in Fig. 16 (c-e). 

 
Fig. 16: (a) White light microscopy image of the front facet of a type I (see Tab. 1, below) FA, 
with (inset) zoom onto a single WG and geometric scales. (b) Linear diffraction pattern of 
centrally coupled cw-light after 𝐿 = 100 mm propagation length. (c-k) Variation of scale 
parameters (c,f,i) coupling strength 𝑐, (d,g,j) dispersion 𝛽2, and (e,h,k) nonlinear constant 𝛾 for 
the FA shown in (a). (c,d,e) Variation as a function of the wavelength 𝜆. (f,g,h) Variation as a 
function of overall scaling (i.e. 𝑟 → 𝑟𝑟 and Λ → Λ𝑟) at a wavelength 𝜆 = 1550 nm. (i,j,k) 
Variation as a function of the WG radius scaling (i.e. 𝑟 → 𝑟𝑟) at a wavelength 𝜆 = 1550 nm. 
(red circles) Values for the samples used in experiments. (dotted lines) Zero dispersion line. 
Subfigures (a) and (b) adapted from [Eil11a]. 

After fixing the materials, unit cell geometry and FA geometry, the fabrication process leaves one 

degree of freedom: all geometric properties of the FA can be scaled by selection of appropriate 

drawing conditions, i.e., the selection of the outer diameter 𝐷. This simultaneously determines (i) 

the nonlinearity coefficient 𝛾 via the effective area 𝐴eff, which grows more or less quadratically 

with 𝐷, (ii) the single-mode cutoff wavelength 𝜆cut also grows nearly linearily with 𝐷 and 

determines the minimal wavelength, at which the FAs are useful, and (iii) the coupling constant 

𝑐, which decreases near-exponentially with growing 𝐷, due to the decreasing overlap of the 

guided mode with the nearest neighbor cell. An overview over the scaling of the model 

parameters upon variation of the diameter 𝐷, i.e. simultaneous scaling of the core radius 𝑟 and 
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unit cell pitch Λ can be found in Fig. 16 (f-h). The effects of the scaling the core radius 𝑟 only is 

displayed in Fig. 16 (i-k). It is seen that the coupling constant 𝑐 is the quantity, which depends 

most on the array geometry, whereas neither the dispersion coefficient 𝛽2 nor the nonlinear 

coefficient 𝛾 change much. The coupling constant 𝑐 is therefore the most critical parameter in 

determining an appropriate FA geometry. A larger value of 𝑐 decreases the characteristic length 

scale 𝑧0 and characteristic time scale 𝑡0 of the FA. Smaller FAs therefore generally demand 

shorter samples and shorter pulses. The lower limit of the coupling constant 𝑐 is determined 

mostly by the length scale on which the impact of disorder becomes influential [And58, Per04a, 

Sch07, Lah08]. We estimate this length to be in the region of a few tens of centimeters and thus 

𝑐 > 1 m−1. The upper limit of the coupling constant 𝑐, on the other hand, is determined by the 

growing impact of short-pulse perturbations. Heuristic tests found that characteristic time scales 

must not drop below 15 fs, thus 𝑐 < 100 m−1 . 

 standard 
(type I) 

short 
(type II) 

long / irregular 
(type III) 

outer diameter 𝑫 [µm] 680 580 805 

index step 𝚫𝒏 [𝟏𝟎−𝟑] 1.1 1.1 3.8 

WG radius r [µm] 9.7 8.25 6.8 

pitch 𝚲 [µm] 34.8 29.6 27.8 

effective area 𝑨eff [𝛍m𝟐] 370 336 134 

nonlinear coeff. 𝜸 [𝟏𝟎−𝟑𝐦−𝟏𝐖−𝟏] 0.30 0.32 0.81 

dispersion coeff. 𝜷𝟐 [𝟏𝟎𝟑fs2/mm] −28 −26 −27 

coupling coeff. 𝒄 [𝐦−𝟏] 27 73.4 6.7 

diff. length 𝑳Diff [mm] 9.2 3.5 39.1 

char. length scale 𝐳𝟎 [mm] 37 13.6 149 

char. time scale 𝒕𝟎[fs] 32 18 63 

char. power 𝑷𝟎[kW]  90 225 7.9 

char. energy 𝑬𝟎[nJ] 2.9 4.3 0.53 
Tab. 1: Characteristic parameter values for the FA samples used in this thesis at a wavelength 
of 𝜆 = 1550 nm. 

Here we used three sets of samples. Most experiments were carried out with samples with 

𝐷 = 680 µm called type I samples, with a coupling constant that is close to neither of the limits 

discussed above. Type II samples with 𝐷 = 580 µm, have been used for experiments in Section 

5.3 and have a coupling constant close to the upper limit, resulting in short characteristic lengths 

𝑧0 and short characteristic time scales 𝑡0. A different class of samples, referred to as type III, has 

been drawn from an earlier fabrication batch. They are characterized by a smaller coupling 

constant close to the lower limit and hence increased characteristic lengths 𝑧0 and times 𝑡0, 

mitigating the impact of higher order effects. Type II samples are, however, also much more 
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irregular, such that a distinction between disorder induced effects and pure LB propagation is 

conceptually difficult. Characteristic values for all three types are displayed in Tab. 1. 

4.4 A Quantitative Propagation Model 

Although the NLSE model discussed in Section 4.2 is the established standard model for ST 

pulse propagation in WAs it is worth noting that the development of this field was mostly driven 

by theoretical studies, owing to the experimental difficulties discussed above. In fact, the typical 

scales presented in Tab. 1 are beyond the range in which the NLSE model is valid. This is in 

particular true for the temporal scale 𝑡0, which is in the range of a few tens of femtoseconds. For 

such time scales quite a few approximations that are essential for the derivation of the NLSE 

break down. These are (i) the truncation of the Taylor expansion of the dispersion relation, (ii) 

the assumption of a constant coupling coefficient 𝑐 over the pulse bandwidth, (iii) the 

assumption of the instantaneousness of the nonlinear response, and (iv) the validity of the SVEA 

itself. Issues (i), (ii), and (iii) can be fixed to a certain degree within the NLSE framework by 

taking into account additional terms [Agr01]. Issue (iv) however warrants introduction of an 

altogether new model. 

Here we followed the approach of the Unidirectional Maxwell Equations (UME) [Kol04a, 

Kin10], adapted for the discrete-continuous nature of WAs [Bab07]. The idea is to produce a 1st 

order wave equation for the real field by ignoring backwards propagating waves. The result is the 

propagation equation [Eil11a]:  
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for the Fourier transform 𝐸𝑛𝑚(𝑧,𝜔) of the real modal amplitude 𝐸𝑛𝑚(𝑧, 𝑡) in WG 𝑛𝑛, which is 

related to the modal amplitude 𝐴𝑛𝑚(𝑧, 𝑡) of Eq. (18) via 𝐸𝑛𝑚(𝑧, 𝑡) = 1
2

(𝐴𝑛𝑚 exp(𝑖𝜔0𝑡) + 𝑐. 𝑐. ), 

where 𝜔0 = 2𝜋𝑣𝑝ℎ/𝜆0 is the carrier frequency at the wavelength 𝜆0. Due to the reality of 

𝐸𝑛𝑚(𝑧, 𝑡) Eq. (20) only needs to be solved for positive frequencies 𝜔 > 0. Equation (20) models 

the evolution 𝐸𝑛𝑚(𝑧,𝜔) under the influence of the full WG dispersion 𝛽(𝜔), in a frame of 

reference co-moving with a speed 1/𝛽1, whose choice is arbitrary but usually taken to be 

𝛽1 = 𝑑𝛽/𝑑𝜔 at 𝜔 = 𝜔0, i.e., the group velocity at the carrier frequency. The second term 
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describes discrete coupling in the array, where 𝑐(𝜔) models the wavelength-dependent coupling 

strength and the matrix 𝐶𝑛𝑚𝑛′𝑚′ models neighborhood relationships, i.e., it is of unity value if the 

WGs denoted by 𝑛𝑛 and 𝑛′𝑛′ are neighbors and zero otherwise. In fact, any kind of coupling 

geometry can be defined with the appropriate 𝐶𝑛𝑚𝑛′𝑚′ matrix, here we model hexagonal WAs with 

91 WGs. The last term describes the influence of the nonlinear polarization. Due to its (almost) 

instantaneous nature it is, however, best described in time domain, as per the third line of Eq. 

(20). Here the first term is the instantaneous Kerr-effect and the second term is the delay 

stimulated Raman response of the medium. For silica glass the response function ℎ(𝑡, 𝑡′) is given 

by the last line of Eq. (20), with 𝜏1 = 12.2 fs  and 𝜏1 = 32 fs and a relative strength of 𝑔 = 0.22 

[Agr01]. 

The functional structure of Eq. (20) is identical to that of Eq. (17), and the split step method can 

be used to obtain numerical solutions. A scheme for the propagation of the field by a step of 

length 𝛿𝑧 is displayed in Fig. 17. With this method the field 𝐸0 = 𝐸(𝑧 = 𝑧0) is first propagated 

by a half step 𝛿𝑧/2 considering only the linear part ℒ of the equation, such that 𝐸(𝑧0 + 𝛿𝛿
2

)=𝐸0 

exp(i𝛿𝑧 2⁄ ℒ). The matrix exponential is carried out in the eigenspace of the linear propagation 

operator ℒ, such that 𝐸 �𝑧0 + 𝛿𝛿
2
� = 𝐸0 ⋅ EVecℒ ⋅ exp(i 𝛿𝑧 2⁄ EValℒ) ⋅ EVecℒ

†, where EVecℒ is the 

matrix of the eigenvectors of ℒ and EValℒ is a diagonal matrix with the eigenvalues of ℒ. The 

eigenspace of the linear operator of Eq. (20) decays into a product of the temporal eigenspace 

and the eigenspace of the coupling matrix 𝐶𝑛𝑚𝑛′𝑚′, such that transformation of 𝐸𝑛𝑚(𝑧, 𝑡) into the 

eigenspace can be carried out by Fourier transform along the time axis and consecutive 

multiplication with the eigenvector-matrix of 𝐶𝑛𝑚𝑛′𝑚′. As this eigenvector-matrix neither depends 

on 𝜔 nor on 𝑧, its time consuming calculation only needs to be done once. Moreover the 

complete transform is very fast as the temporal transform benefits from the availability of the 

𝒪(𝑁𝑡 log𝑁𝑡) scaling of the FFT algorithm and the spatial transform, which scales with 𝒪(𝑁𝑥𝑦2 ), 

is not badly affected by the square scaling law because the spatial number of degrees of freedom 

(i.e., the number of WGs) is small. The nonlinear contribution is then added with a standard 4th 

order Runge-Kutta step, where the value of the linear half-step is used as a predictor value. This 

step is conveniently calculated in time domain, whereas the convolution of the response function 

ℎ(𝑡, 𝑡′) is carried out in frequency domain, where it is a simple multiplication. The 2nd linear 

half-step is then done similar to the first half-step. 

The solution of Eq. (20) thus scales in the same manner as the solution of an NLSE equation. 

The price to pay for the improved accuracy lies in the greater need for resolution. Whereas 

SVEA type equations must only be discretized, that the finest feature of the envelope 𝐴𝑛𝑚(𝑧, 𝑡) 
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is resolved, UME type equations need to be discretized to resolve the carrier wave, which is a 

much more fine-grained discretization. The necessity to also resolve the propagation axis 𝑧 in a 

more fine grained manner then follows automatically from the Courant criterion [Cou28]. 

However, this price is not as high as expected. If one takes the typical time scales from Tab. 1 as 

the smallest features to be resolved in a SVEA then we have to at least resolve fractions of 10 fs. 

The carrier wave, which we have to resolve in the UME scenario, varies on time scales close to 

𝜔0
−1 ≈ 1 fs, which is only an order of magnitude worse. 

 
Fig. 17: Scheme of a numerical step required for the solution of the UME. FFT and IFFT are 
(inverse) Fourier transform steps with respect to the frequency/time axis. 𝐶 denotes the 
coupling matrix 𝐶𝑛𝑚𝑛′𝑚′ and EVec𝐶 and EVal𝐶 are its eigenvector and eigenvalue matricies. 
Indentation denotes subordinate steps.  

We therefore argue that UME type equations are the tool of choice to realistically and 

quantitatively model ST pulse propagation in WAs. They are only a little more computationally 

demanding to implement than SVEA type solvers, which give wrong (or at least imprecise) 

predictions of experiments, anyway. Here we used a parallel implementation of the UME to 

model pulse propagation; many results of these simulations are discussed in Chapter 5. However, 

one should note, that split-step solvers have limits on parallelizability: the calculation of each 

propagation phase is computationally cheap and the expensive transform steps need to operate on 

the full dataset, such that the solver speed quickly becomes limited by the available memory 

bandwidth. For future systems with a high number of transverse degrees of freedom a different 

approach might therefore be necessary for efficient solution of the UME. 
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4.5 Scales and Dominating Effects 

With the introduction of the UME many new effects have to be considered. This section gives an 

overview over their relative strength and will re-justify the introduction of the characteristic 

scales in Section 4.2. To compare the relative strength of each effect we have to judge their 

impact on Eq. (20) in a common framework, i.e., the length scale upon which the effect leads to 

a considerable change of the shape of a pulse with energy 𝐸 and FWHM duration 𝑡0, in the 

absence of all other effects. For the dispersion we have the dispersion length of order 𝑁 termed 

𝐿Disp
(𝑁)  , which is the length after which a pulse of duration 𝑡(0) has broadened considerably. 
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where 𝛽𝑁 = 𝑑𝑁𝛽/𝑑𝜔𝑁 is taken at the carrier wavelength [Agr01]. For the coupling it is the 

diffraction length 𝐿Diff, which is the length after which an initial excitation in a single WG has 

lost roughly 1/3  of the initial energy by coupling to its neighbours. 

 Diff C 0
1 1 1

NN 2 NN NN 2
L L z

c
π π

= = = , (22) 

 

where NN = 6 is the number of nearest neighbors, 𝑐 is taken at the carrier wavelength, 𝑧0 = 𝑐−1 

is defined in Section 4.2, and 𝐿C is the half-beat length of a discrete coupler [Jon65]. The typical 

length scale for the Kerr effect is the nonlinear length 𝐿NL, which is the length after SPM has 

reshaped the pulse spectrum considerably. 
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where the nonlinear coefficient is taken at the carrier wavelength [Agr01]. The impact of the 

higher order parts of the nonlinearity, i.e., the self-steepening and the stimulated Raman effect, 

can be judged with the Raman-length 𝐿Raman; the length after which the pulse has shifted in 

frequency by its bandwidth. A good approximation is [Agr01]: 

 
( )20

1
Raman 0.3fs tL

Eγ
−= . (24) 

The effects can now be compared for a given fiber geometry and excitation wavelength as a 

function of pulse duration 𝑡(0) and pulse energy 𝐸. The dominating effect is the effect, which for 

a given combination of 𝑡(0) and 𝐸 yields the minimal length. Results for a type I FA at 

𝜆 = 1550 nm are plotted in Fig. 18. Linear effects dominate at low powers, whereas nonlinear 
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effects dominate at high powers. Temporal effects dominate for short pulses and spatial effects 

for long pulses. LBs should occur close to the equilibrium point between dispersion, diffraction, 

and the Kerr-effect, which is marked by the green circle. We therefore expect LBs to have a 

typical pulse duration of 𝑡(0)~10 fs and a typical energy of 𝐸~10 nJ, a prediction which 

coincides with the characteristic energy 𝐸0 and duration 𝑡0 in Tab. 1. This prediction is beyond 

the validity of the NLSE, such that the introduction of the UME model is a-posteriori justified. 

 
Fig. 18: Dominating effect vs. pulse duration 𝑡0 and pulse energy 𝐸 for a type I FA at a 
wavelength of 𝜆 = 1550 nm. A typical laser pulse has a duration of approximately 30 − 50 fs 
with variable energy. LBs are expected at the intersection of dispersion-, diffraction-, and Kerr-
dominated areas, where all effects are balanced. LBs should thus have a duration of ~10 fs and 
~10 nJ energy. 

Two more important conclusions can be drawn from Fig. 18 regarding the temporal dynamics of 

ST optics in FAs: (i) the pulse parameter region of Raman/self-steepening dominance is 

“uncomfortably” close to the parameter region, where LBs are expected and (ii) there is a 

considerable mismatch between the duration of the laser pulse used for the excitation in the 

experiment and the expected duration of the LB. The former will, in the best case, facilitate self-

induced red-shift [Dia85, Mit86, Gor86] on solitary waves. It is, however, also known to induce 

instability of high order temporal solitons [Gol85, Ohk87, Tai88, Hus01, Her02]. The latter 

means that in an experiment one has to rely on self-contraction [Nak81, Sha82] to excite a LB. 

This typically means that an excessive amount of energy has to be injected in the FA. Solitary 

wave formation, at least in a simple fiber, then occurs as part of the generation of supercontinua 

[Dud06, Alf06] via the stages of modulation instability [Kar67, Kar69, Has70], leading to the 

formation of Akhmediev breathers [Akh86, Akh09] and soliton fission. The close spectral 

vicinity of the excitation to the zero-dispersion wavelength at 𝜆(𝛽2 = 0) = 1270 nm then lead 

to the generation of blue-shifted waves by resonant radiation [Akh95]. These are shifted further 
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due to radiation trapping [Gor07b] by the group-velocity event horizon [Unr81, Unr05, Phi08, 

Eil13b] formed by the red-shifting and thus decelerating solitary waves. Because this process is 

noise induced and self-amplifying, as strong solitary waves draw energy [Erk10] from weaker 

ones in the presence of the Raman-effect, we also cannot rule out the generation of Rouge-waves 

[Sol07, Sol08, Dud08, Bir13] at this point. 

While the impact of this cascade is well understood in purely temporal experiments, e.g., in 

single core fibers, this was not the case for ST DO systems, prior to this thesis. Moreover, given 

the multitude of effects, which can and will occur if ultrashort pulses propagate through FAs, it 

was prior to this thesis unclear, if LBs would propagate in FAs in a stable manner at all. The 

reason was that their prediction was based on the overly simple NLSE model, which was 

discussed in Section 4.1. The expected generation of LBs in conjunction with a supercontinuum 

of radiation was also one of the driving forces for the development of the ST analysis techniques, 

discussed in Chapter 3. 

In summary, we now have a better understanding of the role of DO in the realm of ST photonics, 

and of the importance of DO systems in the physics of Light Bullets, which are nonlinearity self-

confined in all transverse dimensions. The NLSE was introduced as the standard model for the 

description of nonlinear ST pulse propagation. The two systems, in which ST experiments have 

been carried out in the course of the thesis, have been introduced and the relations of their 

geometric parameters and the model coefficients have been discussed. Using typical values of 

these coefficients we have derived characteristic spatial, temporal, and energetic scales, in which 

true ST dynamics can be expected. This prediction led us to the introduction of the UME model, 

which we argue is the new “gold-standard” for the modelling of ultrashort pulse propagation in 

ST DO systems. A careful reconsideration of typical scales, has reconfirmed the predicted 

parameter range for LB propagation but also pointed out that higher order effects will have 

considerable effect on the ST dynamics of ultrashort pulses in DO systems. The impact of these 

higher order effects on ST pulses and LBs in particular had not been at the focus of ST photonics 

prior to this thesis. The base of knowledge was in fact so small, that the question if LBs could be 

observed at all in an experiment, in the face of the many perturbations they would experience, 

remained inconclusive prior to this thesis. The answer to this question is discussed in detail in the 

next chapter, which will not only make use of the conceptual basis developed here but also 

exploit the experimental methods introduced in Chapters 2 and 3. 
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 Results of Experiments and Simulations 5.
This chapter focuses on the main results of this thesis. It will make heavy use of the methods 

discussed in the previous chapters. Successful implementation of the experiments described here, 

was the main driving force for the development of the pulse generation, analysis methods and 

simulation tools introduced in the previous chapters. These techniques did, in fact, evolve in 

parallel to the experiments presented here. Thus advanced methods, such as ImXFROG and the 

SPS, were not available for early experiments. Furthermore, input pulse durations and attainable 

resolution of iXCorr experiments were oftentimes much worse than the best values stated in the 

chapters above. Specific values will be given where appropriate. Experimental results and data 

from simulations are presented in a tightly knit manner, as they are continuously used for cross-

validation and to expand the available toolbox that allows us to understand the nonlinear 

propagation of ST waves. The repeated jumping between experiment and simulations, which 

might seem unmotivated at times, should thus be viewed as the natural process that organically 

fosters understanding of the complex ST dynamics and evolution behavior, which will be 

encountered in the following sections. 

The main topic of this chapter and of the thesis as a whole has been the experimental analysis of 

the propagation of ST pulses through WAs, with special emphasis on the observation and 

characterization of various classes of Light Bullets in fiber arrays. The chapter thus starts with 

the investigation of fundamental ST propagation effects and then continuously progresses 

towards more complex ST excitations, with reduced symmetry.  

The chapter starts with the analysis of the nonlinear propagation of ultrashort pulses in fs-written 

segmented WAs in Section 5.1 and investigates their suitability for the implementation of an all-

optical limiting device. These experiments are chosen as an entry point to this chapter, because 

due to the absence of LBs at the operation wavelength their nonlinear dynamics is much less 

involved than the dynamics introduced in later chapters. 

In Section 5.2 we report on the existence, observation, and evolution of fundamental LBs, who 

are mainly located in a single, high-symmetry WG at the center of the array. Note that the term 

“Light Bullet” is used somewhat redundantly for the class of solitary ST excitations in general 

and also for fundamental LBs, the prototypical, albeit specific member of this class. The 

meaning is explicitly stated where it might not be clear from the context. 

After the fundamental proof of the experimental observation of stable discrete LBs, we will 

argue that reduction of symmetry induces novel LB dynamics, which had not been previously 

discussed and can only be observed in high dimensional solitary waves. We will first focus on 
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internal asymmetries, which are an intrinsic part of the propagation environment. They couple 

spatial, temporal, and nonlinear contributions to propagation dynamics and have a strong impact 

on LB dynamics. Effects related to these couplings are discussed in Sections 5.2 and 5.3. Section 

5.2 focuses on LB evolution and the self-induced decay, related to the non-instantaneous, 

nonlinear response of the host material and the high-dimensional nature of the LBs. Section 5.3 

deals with effects related to the wavelength-dependence of the discrete coupling strength and 

shows that it has profound impact on the static and dynamic properties of LBs. 

Then we will focus on extrinsic asymmetries, which can be imposed on the system externally. In 

Section 5.4 we observe and characterize Vortex LBs, ST solitary waves with optical angular 

momentum, where the asymmetry is imprinted on the excitation field by a pulse shaping 

technique discussed in Chapter 2. We argue that these are the most complex spatiotemporal 

solitary waves observed, so far. Their successful observation marks the end of this chapter. 

5.1 Nonlinear Self-Limiting in Segmented Waveguide Arrays 

In this section we explore the nonlinear propagation of ultrashort pulses in fs-written waveguide 

arrays. WAs are operated in the normal dispersion regime, such that they are not suitable for the 

observation of LBs. In conjunction with them having just a single transverse dimension they are 

characterized by a much less involved level of internal, nonlinear dynamics and thus serve as an 

entry point for the observation of ST effects in DO systems. The somewhat lower level of 

complexity on the one hand and the greater flexibility of the fabrication technique on the other 

hand allow us to observe and understand effects related to more complex geometries and aim for 

actual applications. Here we investigate the feasibility of segmented waveguide arrays (SWA) for 

the implementation of an all-optical limiting scheme. 

WG segmentation was initially designed as a measure to induce perfect imaging, i.e., to perfectly 

reproduce the input field pattern of a SWA with length 𝐿 at its end. Image formation is, of course, 

driven by diffraction. Thus for perfect imaging one has to devise a way to undo diffraction. 

Diffraction adds a phase onto the spatial spectrum, which dephases the pulse’s spectral 

components in the 1st half of the WA. To achieve perfect imaging propagation in the 2nd half of 

the WA must add a negative spectral phase until at the end of the WA both phases add up to zero 

and the spectral components are again in constructive interference. 

Undoing diffraction is therefore a question of being able to invert the DR 𝛽 = 𝛽(𝜇), where 𝛽 is 

the difference of the longitudinal wavenumber of the WAs Bloch mode with respect to the 

wavenumber of the individual WG and 𝜇 is the dimensionless transverse wavenumber. In 

homogeneous WAs this relation can be obtained from Eq. (15), assuming that cw-light is 
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propagating through the array. The DR is then 𝛽(𝜇) = 2𝑐 ⋅ 𝑐𝑐𝑐(𝜇). 

According to this equation inversion can be achieved by inverting the sign of the coupling 

constant 𝑐 or by shifting 𝜇 by 𝜋. Inversion of the coupling constant is, in principle, possible for 

WAs, however, only for higher order [Man03, Set11a] modes and/or guided modes in arrays of 

photonic crystals waveguides of appropriate symmetry [Bro10, Bro12]. Array segmentation 

exploits the latter approach; the inversion is achieved by inducing a 𝜋-shift in the transverse 

wavenumber 𝜇, inverting the cosine term. A 𝜋-shift in the transverse wavenumber equates into 

adding an alternating sign, i.e., a 𝜋-phaseshift onto the mode of every second WG. This inverts 

the curvature of the dispersion relation and undoes the action of discrete diffraction. Any 

excitation at the beginning of the WA will be reproduced at its end [Lon08, Sza08] in intensity 

and phase, as opposed to nonlinear schemes which only reproduce the intensity pattern [Yan11]. 

The 𝜋-phaseshift is achieved for a particular operating wavelength 𝜆0 by modifying the effective 

index of every second WG in the section close to the length-wise middle of the WA. The 

refractive index is modified by periodically blocking the inscription laser, while it writes the WA 

into the host material. If the length of the section is chosen appropriately a 𝜋-phaseshift can be 

achieved, due to the reduced effective index of the WG section. The periodic blocking also 

results in the inscription of a grating, its Bragg wavelength is, however, far from the operating 

wavelength and thus ignored. 

Here the SWA was 100 mm, with a length of the segmentation section of 5.2 mm, written with a 

laser duty cycle of 50%. A schematic of the sample was presented in Fig. 15 in Section 4.3.1, 

where more parameters of the WA have been discussed. 

In this thesis we aimed for a better understanding of the ST, nonlinear behavior of these SWAs. 

The above discussion only applies to low power, linear waves. The propagation of pulsed, 

nonlinear waves in SWAs was unexplored prior to this thesis. The SWA induces a 𝜋-phaseshift 

only for a certain wavelength and linear propagation. The segmentation further results in a loss 

of ~3 dB for light travelling in the segmented WGs. Higher order ST effects, such as those 

discussed in Sections 4.4 and 4.5 and the effect of asymmetric excitation pulses had been ignored 

prior to this thesis. 

The ultimate aim was to test the feasibility SWA for optical limiting (OL) of powerful pulses. 

The application is driven by the aim for developing integrated, all-optical data processing 

devices [Ji10, Vo10, Egg11, Vo12], which are deemed a key element in future all-optical terabit 

data networks. Of particular interest for long-haul opto-optical networks are all-optical 3R 

stages, which re-amplify, re-time, and re-shape  pulsed data streams, without expensive, bulky, 
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and power-hungry electronic systems. In this scheme OLs are typically used to shape the peak 

section of on-off or phase-keyed pulse trains, mitigating high-power noise and nonlinear 

propagation effects and reducing radio-frequency sideband generation. An OL is a device, which 

has a saturable transmission curve, i.e., its transmission drops for increasing input energy. 

Previous suggestions are mainly based on the nonlinear, optical absorption of complex molecules 

[Tut93, Per96]. They lead to on-chip absorption and generation of heat and are hard to integrate, 

as opposed to SWAs, which reroute “unwanted” power. The opposite of OL, i.e., saturable 

absorption-like behavior, was demonstrated in ordinary WAs [Pro05] for laser mode-locking. 

Various other linear mechanisms may also give rise to the revival of an initial input distribution 

and are therefore in principle suited for OL. The discrete Talbot effect [Tal36, Iwa05a] 

reproduces only spatially periodic input patterns. Photonic Bloch oscillations [Blo29, Mor99a] 

and dynamic localization [Dun86, Lon06, Dre08b] rely on specific transverse potential gradients 

to reconstruct arbitrary wave packets and are susceptible to disorder [Sch08, Dre08a]. 

Continuous longitudinal modulations of the lattice allows for the suppression of transverse 

broadening [Zha10], whereas transverse modulation of the WA can induce defect states, 

suppressing discrete diffraction. In [Hei12] we, however, showed that SWA based OL is superior 

to any of those schemes. 

 
Fig. 19: NLSE simulation of the power dependent continuous wave transmission behavior for 
the SWA based OL scheme. (a) Transmission in central WG vs. input power. (b) Output power 
vs. input power. (c) Field pattern inside the SWA at 𝑃 = 0. (d) Field pattern inside the WA at 
the minimum transmission. Power levels in (c) and (d) are marked in (a) and (b) by the red 
circles. Figure adapted from [Hei12]. 

Preliminary analysis of SWA based OL was carried out in the simplified NLSE scheme, i.e., by 

the solution of the appropriate version of Eq. (17) with Kerr-nonlinearity, under cw-excitation 

and the absence of dispersion. The results are displayed in Fig. 19, where the transmission, i.e., 
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the fraction of the input power leaving the central WG of the SWA, is plotted as a function of the 

input power. The SWA based OL scheme has a minimum transmission is 0.4%, i.e., its switching 

contrast is 22 dB. Moreover the output power has the desired dependence on the input power, 

i.e., a near linear growth for 𝑃 < 1.7𝑐/𝛾 and a nearly constant output power for 1.7𝑐 𝛾⁄ < 𝑃 <

4.7 𝑐 𝛾⁄ . SWAs are therefore a good candidate for OL and a realistic investigation based on the 

UME model introduced in Section 4.4 was thus carried out. 

 
Fig. 20: (a-d) UME simulation of nonlinear ST pulse propagation in an SWA. (a) Transmission 
curve. (b) Temporal output pulse shape as for varying input powers. (c) Output spectrum of the 
SWA. (d) Output of an isolated WG. (e-h) Experimental data for a ST pulse propagating 
through an SWA. An average input power of 1.2 mW corresponds to roughly 7.0 𝐶/𝛾. (d) 
Transmission curve. (f) Field distribution at the SWA output as a  function of the input power. 
(c) Output spectrum of the SWA. (d) Output spectrum of an isolated WG. Direct comparison of 
simulation and experimental power scales is impossible due to uncertainties of the input pulse 
shape. Figure adapted from [Hei12]. 

Results of UME simulations, where the excitation was a Gaussian pulse with a duration of 

300 fs at a carrier wavelength of 𝜆0 = 800 nm, are displayed in Fig. 20. Subfigure (a) displays 

the transmission as a function of the input peak power. While the shape of the curve is initially 

similar to the above discussed model it settles out at roughly 25% transmission and does then 

remain at roughly this value, reducing the switching contrast to 6 dB. The reason for this 

behavior can be seen in Fig. 20 (b), where the instantaneous optical power in the central WG at 

the end of the SWA is plotted as a function of the peak input power. Especially for high input 

powers the pulse no longer leaves the SWA as a cohesive entity but in parts. This is not 

unexpected for pulses propagating in the normal dispersion regime, where no LBs exist, which 

would force the pulse to act in a cohesive manner. The splitting into sub-pulses is attributed to 

the fact, that for each time slice the pulse has a certain instantaneous power, for which the SWA 

imaging either works, fails, or a spatial soliton is generated. Nevertheless SWA are still an 
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attractive candidate for OL, as long as the input power is kept below 4𝑐/𝛾, where nonlinear 

effects are weak and the pulse still emerges intact. 

It is interesting to note, that in this regime the spectrum of the light transiting the SWA is 

broadened very little, as displayed in Fig. 20(c). The lack of spectral broadening is particularly 

evident if compared to the broadening occurring in an isolated WG for the same input pulses, as 

depicted in Fig. 20(d). SWAs are thus not only interesting candidates for OL but also for spectral 

stabilization, where a high power signal can be transmitted without the level of spectral 

deterioration usually encountered. One can think of SWA based spectral stabilization as a means 

to increase the effective area of a mode, by transiently distributing its power onto many WGs. 

Results of the experimental verification of OL and spectral stabilization in SWAs are presented 

in Fig. 20 (f). Note that direct comparison of simulation and experimental power scales is 

impossible due to uncertainties of the input pulse shape. It shows the power dependent output 

pattern of the SWA, which was excited at the central WG only. At low input powers nearly all 

energy is leaving from the same WG, thus segmentation imaging works. Increase of power leads 

to a continuous increase of the amount of energy, which is leaving the other WGs, as expected 

for OL operation. The experimentally transmission curve is presented in Fig. 20(e). OL is clearly 

visible, proving the scheme works as expected. Fig. 20(g) and Fig. 20(h) show power dependent 

output spectra for (h) an isolated WG and (g) the SWA. The spectral stabilization effect is 

obvious, as for the SWA the spectrum does not visibly expand, whereas for the isolated WG it 

expands from less than 10 nm to more than 50 nm. The spectral asymmetry is due to residual 

third order chirp in the input pulse and can be reproduced by appropriate UME simulations. 

Experiments with input pulses modified by SPS (see Section 2.2) and OXFROG retrieval (see 

Section 3.3) are currently under way. 

In summary we have exemplarily shown that WAs can be used to construct complex, nonlinear, 

all-optical elements. As such they are an interesting candidate for on-chip integration of ultrafast, 

all-optical devices in future terabit networks. More specifically we have demonstrated that SWAs 

can take the role of optical limiters. Rigorous ST modelling of pulse propagation in WAs is 

absolutely necessary to understand and to reliably predict their operation, even in the normally 

dispersive regime. Advanced ST analysis techniques will help us to further understand ST pulse 

propagation in WAs, in particular if operated in the near infrared, where anomalous dispersion 

causes the formation of LBs and the spatial and temporal aspects of pulse propagation will 

interact in a complex manner. 
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5.2 Fundamental Light Bullets 

A discussion of LBs in the context of nonlinear optics in WAs is given in Section 4.1. Here we 

shall concentrate on their observation and characterization in FAs. 

At first, however, it is extremely useful to find steady state solutions of the NLSE Eq. (19). As 

discussed above this equation is “just” a qualitative model for ST pulse propagation. Similarly to 

Section 4.5 it is, however, helpful to determine the temporal scale, spatial size, and energy 

requirements of LBs with a certain level of accuracy. In fact, Eq. (19) is the only available model 

that features strictly stationary solutions. Moreover, Eq. (19) supplies a convenient framework to 

evaluate LB stability, something which cannot be done with simple analysis of scale arguments. 

Although these solutions are idealized (they are hence termed idealized LBs), they are pivotal in 

the verification of LB observation, as they represent a set of parameters against which 

experimental and numerical data can be tested. These solutions are therefore a conceptual device, 

the role of which is somewhat similar to the role of Kerr-solitons in supercontinuum generation 

[Dud06, Alf06]. There solitons do not exist in the sense of strict stationarity, however, certain 

features in the pulse dynamics have properties that locally approach that of solitons. Their 

specific properties might change slowly during propagation or abruptly during scattering events, 

however, they retain a robustness against dispersion, which is characteristic for solitary waves. 

Properties of fundamental stationary solutions of Eq. (19) are depicted in Fig. 21, i.e., those 

solutions which are spatially located in a single WG and temporally in a single pulse. In the 

following sections we will discuss more complex solutions. The fundamental solutions constitute 

a one-parameter family of solitary waves, i.e. LBs, where the family parameter is the nonlinear 

phase shift 𝑖. There is a minimum value 𝑖min below which no LB solution exists, because the LB 

solution branches from the top of the dispersion relation at Δ𝛽 = 6𝑐. As opposed to spatial 

discrete solitons here 𝑖min > 6, which we attribute to dispersion, that has to be overcome, too. If 

the minimal phase shift is approached 𝐸(𝑖 →  𝑖min) = ∞, i.e., they have infinite energy, as seen 

in Fig. 21(a). This is different from 1D solutions, where the energy goes to zero and from 2D 

solutions, where it approaches a finite value. These differences can be understood by arguments 

of scale [Sil90], as spatially broad solutions can be approximated by solutions of the continuous 

NLSE [Eil10]. 

The impact of discreteness, however, is evident for larger nonlinear phase shifts 𝑖. At a certain 

threshold nonlinear phase shift 𝑖thresh ≈ 8.43 a minimum energy of 𝐸thresh ≈ 9.05𝐸0 ≈ 27 nJ is 

reached. All solutions with larger 𝑖 have higher energy. This behavior was already described for 

2D discrete spatial solitons [Eil10], its consequences for LB stability and dynamics are essential. 
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As seen in the inset of Fig. 21(a) at 𝑖thresh the largest perturbation eigenvalue, attained from 

linear stability analysis [Hil00], becomes negative and all LB solutions with 𝑖 > 𝑖thresh are thus 

linearily stable. This finding is in agreement with the predictions of the Vakhitov-Kolokolov 

theorem [Vak73]. As all LBs, which we can hope to observe, in an experiment must be stable, 

they will have a minimum energy and, as can be seen from Fig. 21(b-d), a minimum power and a 

minimum of temporal and spatial localization. In particular, we cannot observe LBs with a 

duration of more than 15 fs for type I samples. These numbers reconfirm the predictions from 

Sections 4.3.2 and 4.5. Properties of particular solutions are outlined in Fig. 21(f-k), giving an 

impression of field distributions of LB solutions and of the general trend of increasing 

localization and power as a function of increasing nonlinear phase shift 𝑖. 

 
Fig. 21: (a-d) Parameters of the fundamental LB family as a function of the nonlinear phase 
shift 𝑖. (a) LB energy. (b) LB FWHM duration. (c) LB peak power. (d) Fraction of energy in 
the central WG. (a, inset) Zoom into (a) close the point of minimal energy (𝑖thresh, 𝐸thresh). The 
green line displays the largest perturbation eigenvalues. The transition from linear instability 
(at least one positive eigenvalue) to stability (all eigenvalues negative) occurs at 𝑖thresh, and is 
marked by the red line, as (a-d), too. (e-j) Exemplary features for LB solutions marked with red 
circles in (a). (e,h) 3D ST isointensity plots. (f,i) Energy density as would be recorded by a 
camera, i.e., a slow spatial detector. (g,j) Pulse power in the central WG. Subfigures (a)-(d) 
adapted from [Eil11a]. 

It is now instructive to investigate the result of simulations of the UME model. Due to the 

limitation of pulse duration and pulse shaping capabilities direct excitation of LBs is impossible. 
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Moreover, it must be noted that our first experiments in this direction had been made with an 

older laser system, which only delivered 170 fs pulses at 1550 nm, instead of the 50 fs stated in 

Section 2.1 and the reference pulse duration was close to 60 fs. Thus the iXCorr resolution was 

not nearly good enough to measure the LB duration, nor the absence of linear broadening. 

Rigorous numerical modelling then proved to be a key element in the observation of LBs. 

Results of the solutions of the UME model (Eq. (20)) with an input pulse duration of  𝑡(0) =

170 fs and an energy of 𝐸 = 153 nJ are shown in Fig. 22. This is roughly five times the expected 

minimum energy 𝐸thresh = 27 nJ, such that sufficient power overhead is available for the 

nonlinear pulse contraction. In fact, we have later shown that only 80 nJ are necessary to excite a 

LB. Fig. 22(a) shows the pulse power evolution in the central WG of the FA. The evolution is 

split into three phases. In phase I at 𝑧 < 15 mm the pulse contracts to a duration of roughly 

25 fs. In phase II at 15 mm < 𝑧 < 40 mm two distinct, short pulses separate from the main peak 

and decelerate, i.e. they propagate at a lower group velocity than the dispersive waves. The 

trailing waves quickly disperse. In phase III the two short pulses decay themselves. The 

properties of the most retarded pulse are displayed in Fig. 22(b) and Fig. 22(c). Here we have 

plotted the pulse duration, wavelength, and fraction of the total energy contained in this pulse. 

The pulse’s duration is nearly stationary. The temporal broadening of a hypothetical pulse of the 

same duration, affected by linear dispersion only, is shown by the dashed line in Fig. 22(b). This 

pulse would disperse quickly, whereas the pulse we actually observe is subdispersive.  The same 

argument applies to the energy content of the LB. It is slowly decreasing but much slower than 

would be expected for a field that is affected by discrete diffraction only. 

The behavior observed in phase II is driven by the evolution of the central wavelength, which 

grows steadily during propagation, reducing propagation speed and increasing pulse delay. Such 

behavior is typical for solitary waves affected by SRS. Its influence on ST pulse propagation is, 

however, much more complex. As seen in Section 4.3.2 all linear effects become more influential 

for longer wavelengths, whereas the nonlinear coefficient decreases. Therefore the characteristic 

energy 𝐸0 grows rapidly for increasing wavelength. A once excited LB, which has a fixed energy, 

must thus react to the growing 𝐸0 by evolving towards a smaller normalized energy. It then shifts 

from its initial excitation point on the 𝐸(𝑖) curve in Fig. 21(a), towards lower normalized energy 

and lower values of 𝑖. This is necessarily accompanied by a reduction of the spatial and temporal 

localization. The ST field distribution is displayed Fig. 22(d), which shows an isointensity plot of 

the field at the end of phase II, together with a projection onto the 𝑥 − 𝑡. The most retarded pulse 

is already decaying, whereas the second pulse is still constitutes a well-confined LB. Both pulses 

are preceded by delocalized dispersive radiation. 
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Fig. 22: UME simulations of LB formation, evolution, and decay in a type I FA with 
𝐸 = 150 nJ excitation energy. (a) Instantaneous power vs. propagation length in central WG. 
(I), (II), (III) Evolution phases. Lines mark their limits. Scale bars mark averaged dispersion 
and diffraction lengths. (b) Wavelength and pulse duration of the most retarded peak vs. 
propagation length. (c) Fraction of the total energy in the central WG of the most retarded 
peak. (d) Isointensity plots at 𝑧 = 35 mm. Red, solid circles indicate LB locations. Red, dashed 
circles indicate LB leftovers after decay. The color plot is a projection onto 𝑦 − 𝑡-plane. (e) 
Trajectory of properties of the most retarded pulse in the energy-duration-wavelength space. 
The colored surface indicates the locations of stationary NLSE solutions. The gray lines are 
projections of the green line. No LB solutions on the dark blue surface, LB solutions unstable 
on the bright blue surface, and LB solutions stable on the white surface. Subfigures (a), (b), (c) 
adapted from [Eil11a]. 

Due to the increasing wavelength both the dispersion length 𝐿Disp and diffraction length 𝐿Diff are 

modified. To measure the length of phase II in terms of these quantities we therefore modify Eqs. 

(21) and (22), introducing an average dispersion length 〈𝐿Disp〉 and diffraction length 〈𝐿Diff〉 
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where 𝜆𝑐 is the local carrier wavelength of the pulse and 𝑧1 and 𝑧2 mark the limits of phase II. 

The pulse propagates over a LB length 𝐿LB = 𝑧2 − 𝑧1 of roughly 5.3〈𝐿Diff〉 and 9.0〈𝐿Disp〉 in a 

stationary manner, such that one can speak of the existence of LBs with good justification. 

The transition into phase III is marked by a sudden loss of LB energy and the onset of dispersive 

broadening. It is the natural consequence of the above described evolution.  As the LB increases 

in wavelength and evolves due to the increase of the characteristic energy 𝐸0, its energy content 
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is eventually equal to the threshold energy for LB formation 𝐸thresh. This is the point, which 

marks the transition into phase III, where LBs become unstable and consequentially decay. 

This line of argumentation is augmented by the data displayed in Fig. 22(e). The curved surface 

shows the duration of idealized LBs as a function of the wavelength and the energy content in 

the central WG. It was synthesized from the curves in Fig. 21 and the wavelength dependent 

parameters in Fig. 16. The line is compiled from the pulse parameter trajectory in Fig. 22(b). The 

bounding surfaces display projections onto corresponding subspaces. The trajectory approaches 

the surface of idealized LB solutions in phase I, it then remains close to this surface in phase II, 

during which it moves into the region with unstable solutions and eventually into the region 

without solutions altogether. This transition marks the beginning of phase III, in which the pulse 

trajectory leaves the surface. Evolution of the trajectory towards the surface proves that LB 

solutions serve as a nonlinear attractor of the systems dynamics, again underlining the nature of 

LBs being solitary waves. 

 
Fig. 23: UME simulations of LB formation, evolution, and decay in a type III FA with 
𝐸 = 9 nJ excitation energy. (a) Instantaneous power vs. propagation length in central WG. (I), 
(II), (III) Evolution phases. Lines mark their limits. Scale bars mark averaged dispersion and 
diffraction lengths. (b) Wavelength and pulse duration of the most retarded peak vs. 
propagation length. (c) Isointensity plots at 𝑧 = 200 mm. Red, solid circles indicate LB 
locations. (e) Trajectory of properties of the most retarded pulse in the energy-duration-
wavelength space. The colored surface indicates the locations of stationary NLSE solutions. 
The gray lines are projections of the green line. No LB solutions on the dark blue surface, LB 
solutions unstable on the bright blue surface, and LB solutions stable on the white surface. 
Figure adapted from [Eil11a]. 

It must be noted however, that the pulse duration settles out at no less then 25 fs, whereas the 

idealized solutions in this wavelength range predict a maximum LB duration of 15 − 19 fs. This 

discrepancy is due to the comparatively strong impact of higher order effects, e.g., high order 

dispersion. This is proven by another simulation in a type III fiber, where the characteristic time 
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𝑡0 is roughly twice as long, mitigating higher order effects. Data of this simulation is displayed 

in Fig. 23. Here an input energy of 9 nJ was used and we observe the same three evolution 

phases, as can be seen from the power evolution in the central WG in Fig. 23(a). The pulse 

parameter evolution curve is displayed in Fig. 23(b). A snapshot of the ST intensity distribution 

towards the end of phase II is displayed Fig. 23(c). Here a separation of two well-localized LBs 

trailing a set of diffracted waves is clearly visible. In type III samples the trajectory of the LB 

parameters approaches the ideal LB surface very closely, as can be seen in Fig. 23(d). The 

measured pulse duration is 35 fs and the duration of the idealized solution is 31 − 40 fs, 

supporting the notion of the idealized LBs acting as a nonlinear attractor for the ST pulse 

dynamics in DO systems.  

 

Fig. 24: Scheme of the LB and VLB experiments with iXCorr analysis stage. Beam 
propagation left to right. An 𝜆 = 800 nm pulse (green) is split. The 1st part bypasses the 
experiment through a delay line and impinges on a BBO crystal. The 2nd part is converted to 
𝜆 = 1550 nm in an OPA (red). It is focused onto the front of the FA, exciting a Vortex LB or 
an ordinary LB if the phase plate is removed. A 2nd lens images the output onto the BBO 
crystal. This crystal generates sum-frequency light (blue), which is imaged onto a CCD, 
recording iXCorr data at the FA end. The phase plate is only present for VLB experiments (see 
Section 5.4). Figure adapted from [Eil13c]. 

The 𝐿LB for type III FAs is of course longer. In terms of diffraction and dispersion lengths one 

gets 𝐿LB = 6.4〈𝐿Diff〉 = 11.2〈𝐿Disp〉, which is slightly more than for type I FAs. An estimate of 

the dependence of 𝐿LB on the array properties was carried out in [Eil11a], where we found that 
𝐿LB

〈𝐿Diff〉� ~𝑐−𝑞, where 1
2� < 𝑞 < 1. Here the value is 𝑞 = 0.19, somewhat smaller than 

predicted. Nevertheless, either value underlines, that a reduction of the coupling strength will 

extend the normalized LB lifetime, but only at a very moderate rate. 
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Now that we have established important parameters for the propagation of LBs, such as required 

pulse energies and sample lengths, we can tackle the experimental observation of LBs. A 

schematic representation of the experimental setup is displayed in Fig. 24. An 800 nm pulse is 

split. The first part is used to pump an OPA, emitting a pulse at 1550 nm, which is focused onto 

the central WG of the FA (the phase plate is only present for Vortex Light Bullets experiments, 

discussed later in Section 5.4). The back surface of the FA is imaged onto a 𝜒(2)-crystal. The 

second part of the 800 nm pulse is used as a reference, which co-propagates through the crystal. 

The part of the experiment after the crystal forms an iXCorr setup, the details of which are 

discussed in Section 3.1. 

 
Fig. 25: Experimental data of iXCorr analysis of LB propagation in (a-f) a type I FA of (a-c) 
𝐿 = 40 mm and (d-f) 𝐿 = 20 mm and (g) a type III FA of 𝐿 = 120 mm. (a-c) Time averaged 
camera images at different input energy levels in (a) the linear regime, (b) the single LB 
regime, and (c) the double LB regime. (d-g) iXCorr isointensity plots in the same input energy 
regimes. Subfigures (a)-(c) adapted from [Eil11a]. 

Results for the experiment are displayed in Fig. 25. In Fig. 25(a-c) camera images of the output 

factet of a type I fiber with a length of 𝐿 = 40 mm for varying input energies are displayed. The 

first image is below the LB threshold energy and linear broadening is observed. Increase of 

power leads to some degree of spatial localization. More instructive is the data obtained from 

iXCorr traces, displayed in Fig. 25(d-f). ST broadening is visible in the low power case. In the 

𝐸 = 102 nJ experiment full ST reshaping of the light field is observed, where a ST localized 

wavepacket, with a length that is equal to the iXCorr resolution, contains almost all energy of the 

LB. Increase of the energy to 𝐸 = 157 nJ generates a similar pattern with more dispersive waves 

preceding the localized wavepacket. The temporal separation of the localized wave from the 

dispersive wave is roughly 150 fs. These results are in agreement with the above discussed 

simulations. An iXCorr trace from a similar experiment in a type III fiber with a length of 

𝐿 = 120 mm is displayed in Fig. 25(g). Here the temporal separation of the LB from the 

 
http://www.iap.u
ni-jena.de/iapme
dia/de/Gruppe+
Pertsch/Theses/
Falk_Data/f25m

1.mp4 

 
http://www.iap.u
ni-jena.de/iapme
dia/de/Gruppe+
Pertsch/Theses/
Falk_Data/f25m

2.mp4 



5.2 Fundamental Light Bullets 

 65 of 99 

dispersive background is even more obvious, due to the longer sample, which maps a similar 

increase in wavelength into a larger delay. 

 
Fig. 26: ImXFROG reconstruction of a LB in a 30 mm type I FA. The excitation pulse is a 
50 fs Gaussian at 1550 nm. (a) Temporal, (b) spectral, and (c) spectrographic representation. 
The pulse is composed of a leading, blue-shifted, dispersive part, trailed by a red-shifted LB. 
The pulse is essentially transform-limited. Figure adapted from [Eil13a]. 

The validation of the compression to the value predicted from the solution of the UME equations 

was carried out in a later experiment [Eil13a] with an 𝐿 = 30 mm type I sample and the laser 

system introduced in Section 2.1, using the ImXFROG technique (see Section 3.2). Results are 

displayed in Fig. 26. We observe a transform limited 𝑇 = 25 fs pulse with a bandwidth of 

180 nm and a time-bandwidth product of < 1.2. The pulse is redshifted from the excitation 

wavelength and is preceded by a blue-shifted pedestal of dispersive waves. Linear broadening 

over the sample length would lead to a duration of roughly 90 fs and strong pulse chirp. Freedom 

of chirp and the correct prediction of the pulse duration are the definite proof of the dispersion-

freeness of the pulse and of the solitary nature of LBs. 

More systematic experiments reproduce all other essential features of the evolution dynamics. A 

set of low-resolution ImXFROG measurements of the central WG pulse in type I samples of 

various lengths and an input energy of 𝐸 = 150 nJ are shown in Fig. 27, together with their 

numeric counterparts. Both sets of data agree very well. Low-resolution ImXFROG traces have 

been recorded with the ImXFROG setup (see Section 3.2), but only with coarse IF filters and no 

FPI. Retrieval of the signal from the FROG traces was thus impossible. However, extraction of 

overview data and comparison of the FROG traces with numerical results was still found to be 

helpful. The FROG trace of the shortest sample shows the onset of the development of two 

redshifted LBs, together with a blueshifted dispersive wave. The redshift is much more 

pronounced for the 𝐿 = 40 mm samples; the most retarded LB has already left the measurement 

window. Only residual radiation can be observed for the 𝐿 = 60 mm sample. 
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Fig. 27:(a-c) Experimental and (d-f) simulated low-resolution ImXFROG traces of the field in 
the central WG of a type I FA with a 𝑇 = 170 fs excitation pulse of 𝐸 = 150 nJ energy. Shown 
are sample lengths (a,d) 25 mm, (b,e) 40 mm, and (c,f) 60 mm. Two red-shifted and delayed 
LBs are visible at 25 mm. At 40 mm the more red-shifted LB has left the wavelength window 
of the detector, only a small part is still visible in the simulation. Short wavelength residual 
radiation is preceding the LBs. Only dispersive radiation is detectable at 60 mm. Figure 
adapted from [Eil11a]. 

 

Fig. 28 displays measured cross correlation traces of the central WG of a type I FA with a length 

of 𝐿 = 20 mm and therefore at the initial stages of the LB formation process and with a length 

of 𝐿 = 60 mm after all LBs have decayed. All traces are plotted for a range of excitation 

energies, which span from the linear regime, well into the LB regime and have been made with 

an input pulse duration of 𝑇 = 50 fs. For the short sample red-shifting induced delay, whose 

magnitude grows with increasing input power is observed, together with a weak peak of leading 

dispersive radiation. Pulse contraction cannot be observed due to the limited resolution of the 

iXCorr system. Pulse splitting related to the excitation of multiple LBs cannot be observed due 

to the short sample length. No LBs can be observed for the long samples. Nevertheless we 

observe weak peaks of delayed radiation. The number of the peaks grows by one for roughly 

every 80 nJ of input energy. These are the leftover of LBs, which have decayed after they 

reached the end of their life cycle in phase III. Although they broaden and loose energy they still 

propagate at a considerably slower speed than the dispersive radiation and can thus be 

distinguished. 

Moreover from this data we conclude that for the excitation of a single LB an energy of roughly 
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𝐸 = 80 nJ is required for an input pulse duration of 50 fs. As the LB has a minimal energy of 

𝐸thesh = 9.05𝐸0 = 31 nJ, this means that LBs can be excited with a efficiency of roughly 40% 

for type I samples. This finding is backed up by simulations. 

 
Fig. 28: Cross-correlation measurements of light leaving the central WG of a type I FA. (a) 
after the point of creation of the first LB at 𝐿 = 20 mm and (b) after the point of LB decay at 
𝐿 = 60 mm for various input intensities. Marked are (blue, dashed) the dispersive wave peak, 
(red, solid) the LBs (20 mm sample), and the residual leftovers of decayed LBs (60 mm 
sample) and how they move as a function of the input energy 𝐸. Figure adapted from [Eil11a]. 

In summary we have shown that stable LBs exist in FAs and that they can be excited and 

observed in an experiment. As opposed to their low dimensional cousins they have a maximum 

duration and minimum energy threshold. They are locally robust against perturbations such has 

higher order dispersion, the Raman effect and self-steepening, and the wavelength dependence of 

the coupling. They exhibit a novel kind of evolution behavior that is driven by the Raman 

redshift. This behavior can be broadly characterized by three phases: generation by self-

contraction, stationary propagation with adiabatic redshift, and decay through the growth of the 

energy threshold. This phenomenon is linked to the thresholds mentioned above, thus a 

consequence of the dimensionality, and therefore a genuinely ST effect. It limits the possible 

propagation length of LBs in FAs of the basic design considered here to a few tens of dispersion 

lengths. More advanced sample designs might surpass this limitation but are beyond the scope of 

this work. 

5.3 Direct Spacetime Coupling 

We have seen in the last chapter that the intriguing LB evolution behavior is triggered by the 

intrinsic, temporal asymmetry of the Raman response. We will now closely investigate the 

consequence of another type of intrinsic asymmetry: the wavelength dependence of the coupling 

strength 𝑐(𝜔). On the one hand it constitutes a temporal asymmetry, similar to the delayed 

Raman response, because any frequency dependent factor in the propagation model acts like a 

convolution with a non-instantaneous response function in time domain. On the other hand it is 
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qualitatively different in that it does not mix dispersion and nonlinearity, as the delayed Raman 

response does, but it mixes diffraction and dispersion. Such a mixing on the level of the 

propagation equation (i.e., without mediation by the field) is referred to as direct space-time-

coupling (DSC). 

DSC is closely related to the concept of group velocity in multi-modal systems. The group 

velocity in systems with DSC is by no means bounded to the speed of light in a medium. In fact, 

superluminal, as well as, subluminal propagation of light pulses have been  reported in various 

media [Dog01b, Dog01a, Ste93, Kuz01, Ste03], raising the discussion if signals could propagate 

faster than light [Nim99]. However group- and signal velocity are two different measurables. 

The limits of relativity do apply to the latter [Ste03]. Superluminal as well as subluminal pulse 

propagation in systems with DSC can be explained on the basis of the Gouy phase [Por02, 

Por03]. The characterization of superluminal pulse propagation in the context of LBs in FAs is at 

the focus of Section 5.3.2. 

The coupling of spatial and temporal frequency components also leads to a non-factorizable ST 

structure of pulses. While these pulses can be generated using linear optical elements, another 

established route to achieve such coupling is to exploit non-linear pulse reshaping to generate 

fields with DSC. Some examples are tilted pulses [Mar89], and their axially symmetric 

generalization (X-like waves [Saa97]), as well as helical beams in Raman media [Gor07a]. They 

can be generated in quadratic [DT03] and Kerr nonlinear media with normal dispersion, 

sustaining the spontaneous generation of X-like waves [Fac06, Min09a, Blo09] propagating sub- 

or superluminally. In 1D nanowire WAs the coupling of spatial and temporal dispersion makes 

the zero-dispersion wavelength dependent on the supermode and thus on the excitation 

condition. This has a strong impact on quasisoliton-induced Supercontinuum-generation [Ben09, 

Ben08, Gor10]. In Section 5.3.1 we will show how the nonlinear effects associated with LB 

propagation imprint a dependence of spatial and temporal coordinates in the spectrum onto a 

previously factorizable ST pulse. 

At this point, we first explore the origin of the DSC in FAs and compare it to DSC in 

homogeneous materials. DSC occurs if the curvature (i.e., the Hessian matrix) of the dispersion 

relation cannot be factored into a spatial and temporal part, that is, if 𝐷21 = 𝐷12 ≠ 0 or 

𝐷13 = 𝐷31 ≠ 0, where 
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where 𝜇 and 𝜈 are the transverse wave vector components, 𝜔 is the frequency and 𝛽 =
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𝛽(𝜔, 𝜇, 𝜈) is the longitudinal wavevector component of the medium (or of a certain Bloch band 

in case of a periodic medium). In this sense DSC acts like a form of spatiotemporal anisotropy: it 

forces the eigenvectors of 𝐷𝑛𝑚 to have both spatial and temporal, non-zero components. Thus 

wave propagation is not a superposition of purely spatial diffraction and purely temporal 

dispersion, both effects are intermixed instead. Eq. (26) can be derived from the propagation 

equation. In case of a FA the propagation equation takes a generalized form of Eq. (19), which 

reads as 
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where 𝛼1 = 𝑐1(𝑐0|𝛽2|)−1/2 is the dimensionless STC coefficient. It is related to the wavelength 

dependence of the coupling coefficient 𝑐 (𝜔), which was expanded into a Taylor series around 

the carrier wavelength 𝜆0 = 2𝜋𝑐/𝜔0 and cut off after the linear term 𝑐(𝜔) ≈ 𝑐0 + 𝑐1(𝜔 − 𝜔0). 

A plot of the magnitude of 𝛼1 is given in Fig. 29 for type I and type II FAs. It is evident that both 

arrays exhibit negative STC, as 𝛼1 < 0, which is due to the increase of 𝑐 with increasing 

wavelength, i.e., the increase of 𝑐 with decreasing frequency 𝜔. The quantity of 𝛼1 can be 

influenced by selection of the FA type. Here we consider only type I and type II arrays. Both 

have a considerable magnitude of STC, i.e., we can expect a measurable impact of STC on LB 

propagation. Moreover, we note that 𝛼1 is nearly constant over the wavelength range 

1500 nm <  𝜆 < 2000 nm, which is relevant for LB propagation. Thus the linear cutoff of the 

series expansion of 𝑐(𝜔) is justified. Experiments in this section are carried out in type II FAs, 

due the larger magnitude of their STC coefficient 𝛼1. 

 
Fig. 29: Dimensionless STC coefficient 𝛼1 vs carrier wavelength for (solid) type I FAs and 
(dashed) type II FAs. Figure adapted from [Eil11b]. 

The dispersion relation in physical units including STC is 

 ( ) ( ) ( ) ( ) ( ) ( )( )0 0 1 02 cos cos cosc cβ ω β ω ω ω n m n m= + + − + + +   . (28) 

The dispersion relation for homogeneous space can be obtained from the Helmholtz-Equation 
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with the approximation of forward-moving waves 
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with 𝑘0 representing the wavevector at the central frequency 𝜔0, the corresponding group 

velocity 𝑣𝑔 , and the transverse wavevector components 𝑘𝑥 and 𝑘𝑦 in place for 𝜇 and 𝜈. The 

cross diagonal entries 𝐷13 = 𝐷31 for the Hessian matrices are then 
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Thus, both wave propagation in homogeneous media and in DO systems are influenced by STC. 

The influence is, however, quantitatively different and can be approximated by comparing the 

magnitude of the diagonal and cross-diagonal elements of the respective Hessian matrices. If we 

assume for both that the excitation is a more or less transform limited pulse with duration 𝑡(0), 

such that 𝜔 − 𝜔0 ≈ 1/𝑡(0), we can derive a minimal pulse duration 𝑡min, which is needed for the 

cross diagonal terms to become influential: 
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where the values have been obtained for light with a wavelength of 𝜆 = 1500 nm and a type II 

FA. The value 𝑡min is to be understood in the sense that for longer pulses the effect of STC is of 

increasingly less influence. Thus STC based effects in homogeneous media can only be observed 

for almost single-cycle pulses, for which Eq. (29) fails anyway. In DO systems we can observe 

effects based on STC for reasonably short pulses. DO systems are therefore an ideal system to 

study STC effects. Moreover, one can tune the degree of STC by changing the wavelength 

dependence of the WG coupling, e.g., by varying the array geometry. 

Now that we have established that STC is an important effect in the propagation of ultrashort 

pulses in FAs we will turn to the details and see how it affects the static properties of LBs in 

Section 5.3.1, as well as, their dynamic evolution in Section 5.3.2. 

5.3.1 Spectral Symmetry Breaking of Light Bullets 

The stationary properties of idealized LBs have been discussed in Section 5.2, with an overview 

of their properties given in Fig. 21. Among other approximations we had assumed that the 
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coupling coefficient 𝑐 does not depend on the wavelength. We now lift this assumption and solve 

for stationary solutions of Eq. (27), instead of Eq. (19).  

 
Fig. 30: (a-d) Parameters of the LB family as a function of the nonlinear phase shift 𝑖 for four 
levels of STC. For 𝛼1 = 0 the results of Fig. 21 are reproduced. (a) LB energy. (b) LB FWHM 
duration. (c) LB peak power. (d) Frequency shift in the central WG of the FA compared to the 
carrier frequency. (e-h) ST spectra for LBs with 𝑖 = 15. 𝜇 is the transverse wavenumber along 
one dimension whereas 𝜈 = 0.  𝜆SF is the wavelength of the sum-frequency light for a carrier 
wavelength of 𝜆 = 1550 nm a reference wavelength of 𝜆Ref = 800 nm and a type II FAs. 
(White lines) denote the mean wavelength vs the transverse wavenumber. The ST asymmetry 
value ΔSF is the peak-to-valley-value of this mean wavelength. (i) ST asymmetry value ΔSF for 
the four LB families as a function of the nonlinear phase shift 𝑖. (j) Mean ST asymmetry value 
vs. STC coefficient for (points) the data taken from (i) and (gray line) linear fit. Figure adapted 
from [Eil11b]. 

Properties of these LB solutions are displayed in Fig. 30. Subfigures (a-c) display energy, 

duration and peak power as a function of the nonlinear phase shift for various values of the STC 

coefficient 𝛼1. Note that typical values for type II FAs, used for the experiments discussed here, 

are in the range between −0.2 < 𝛼1 < −0.1 as can be seen from Fig. 29. The curves for 𝛼1 = 0 
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are the same as those presented in Fig. 21(a-c) and serve as a reference. It can be seen that an 

increase in the STC coefficient leads to an increase in the minimal nonlinear phase shift 𝑖min, 

which we attribute to the larger effective coupling coefficient experienced by the long-

wavelength components of the LBs. LBs with higher values of 𝛼1 also need more peak power 

and have a shorter duration. Fig. 30(d) shows the shift of the mean frequency in the central WG 

of the FA with respect to the carrier frequency. The light in the central WG of the FA is thus 

shifted to considerably lower frequencies and thus longer wavelengths. 

A better overview over the spectral properties of the LB spectra is given in Fig. 30(e-h). Here we 

have plotted the ST spectra of LBs with 𝑖 = 15𝑧0−1 for the four discussed values of the STC 

coefficient 𝛼1. These graphs have been generated by looking the Fourier transform of the steady 

state solution with respect to 𝑛, 𝑛 and 𝑡 and then taking a cross section at the center of the first 

transverse wavenumber, thus 𝜈 = 0. The spectra are then multiplied with the Fourier transform 

of the modal field and plotted over three Brillouin-zones. The wavelength axis has been rescaled 

using the parameters for a type II FA and assuming up-conversion of the spectrum with an 

800 nm reference pulse. These transformations will later be helpful to ease visual comparison 

with experimental data. It can be clearly seen that an increase of 𝛼1 leads to ST distortion of the 

spectra. At 𝛼1 = 0 the plot can be factorized into a spatial and temporal part, whereas there is a 

growing interdependence visible for larger STC coefficients. The effect can mainly be attributed 

to a widening of the spatial spectra for increasing wavelengths, which means that long 

wavelength components are more localized than short wavelength components.  

The level of interdependence is quantified by calculating the spectral centers of gravity as a 

function the transverse wavenumber. They are then plotted as white curves over the ST spectra. 

Their peak-to-valley-value ΔSF is termed ST asymmetry value and plotted for all solutions as a 

function of the nonlinear phase shift 𝑖 in Fig. 30(i). Interestingly we find that ΔSF is almost 

independent of 𝑖 and thus on the LB energy. It is therefore a measure of the STC value 𝛼1. The 

relation between ΔSF and 𝛼1 is clarified in Fig. 30(j). The circles mark the data taken from Fig. 

30(i) and the gray line is a linear fit. It can be seen that the linear fit is a good approximation and 

that the ST asymmetry value is therefore proportional to the STC coefficient of the system with  
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For type II FAs, where we simplify the data from Fig. 29 to 𝑎1 ≈ −0.12 in the wavelength range 

of 1550 nm < 𝜆 < 2000 nm, which is relevant for LB propagation, we therefore expect to 

measure a ST asymmetry value of ΔSF ≈ 5.4 nm, which is easily measurable in an experiment 
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and ΔSF ≈ 2.5 nm for type I FAs, which we will investigate numerically. 

Experimental verification of the STC is then carried out as follows: the iXCorr setup discussed in 

Section 3.1 is modified after the BBO crystal. Instead of imaging the SF field onto a CCD we 

Fourier transform it in space, using a lens and a 2𝑓-setup. A slit then selects only the cross 

section of the data with 𝜈 = 0. A second lens images this data slice onto the input slit of an 

imaging spectrograph, which generates the temporal Fourier transform of the input field along 

the direction perpendicular to the slit. The resulting ST spectra are recorded by a CCD. In these 

experiments the delay stage is not scanned, instead it is fixed at the position, which generates a 

maximum of SF light. This delay is assumed to coincide with the (temporal) location of the LB. 

Hence, the correlator is used to cut a temporal section of the duration of the reference pulse, here 

60 fs, resulting in a discrimination of dispersive radiation from the measurement, which is 

temporally separated from the LB, as discussed in Section 5.2.  

 
Fig. 31: (a-d) Experimental ST spectra of an L = 25 mm type II FA for various input pulse 
energies. The iXCorr delay was adjusted to the peak delay of the cross-correlation trace. (white 
lines) Spectral centre of mass. (red lines) Borders of the 1st Brillouin zone. (a) Insufficient 
energy for LB excitation at low input energy levels, no asymmetry observed. (b,c) Excitation 
of a single LB.  Measured spectral asymmetry ΔSF ≈ 4.0 nm at 60 nJ and 2.8 nm at 94 nJ. (d) 
Multiple LBs excited, no asymmetry observed. (e,f) ST asymmetry as predicted by UME 
simulations for type I FAs (e) with 𝛼1 = −0.1 and (f) without STC for range of input powers 
and propagation lengths. Figure adapted from [Eil11b]. 

Results for a type II FA with a length of 𝐿 = 25 mm for various input energies are displayed in 

Fig. 31. For low input energies, depicted in Fig. 31(a), there is no measurable spectral symmetry 

breaking, which is clear because the exciting pulse is spatiotemporally symmetric, and there is 

not enough input power for the spectrally asymmetric LB to act as a nonlinear attractor. If, 

however, the input power is increased sufficiently to generate a LB, as can be seen in Fig. 31(b) 

and (c), spatiotemporal asymmetry is observed, as expected. The observed value of ΔSF(60 nJ) =

4.0 nm coincides well with the expected value of 5.4 nm. The weaker asymmetry at 

ΔSF(94 nJ) = 2.8 nm might be either due to the stronger redshift at higher input powers, with, 

e.g., ΔSF(1800 nm) = 3.1 nm or the existence of more temporally non-separated dispersive 
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waves, which are spectrally symmetric. If the input energy is increased to be sufficient for the 

excitation of a second LB, as has been done in Fig. 31(d), no spectral asymmetry is again 

observed, which might be explained by the fact that the second LB is not yet fully developed and 

not temporally separated. However, given the uncertainties of the experiment and the very 

indirect method of measuring the ST asymmetry in the temporal vicinity of the LB we claim, that 

the semi-numeric prediction of above is in good agreement with experimental data. 

This notion is supported by results from UME simulations displayed in Fig. 31(e) and (f). The 

two panes display the ST asymmetry in a time slice of 60 fs around the position of the LB center 

for various excitation energies and propagation lengths in a type I FA with (e) and without STC 

(f). Here the predicted value for the asymmetry was ΔSF ≈ 2.5 nm. Almost no symmetry 

breaking of the ST spectra is measured in the absence of STC, a clear symmetry breaking is 

observed if STC is present. Then the asymmetry takes values between 1.5 nm <  ΔSF < 3 nm, in 

agreement with the expected value. It also becomes clear that the ST asymmetry develops 

together with the LBs, because it is initially zero and starts to form at 𝑧 ≈ 15 mm, which we 

have identified in Section 5.2 as the approximate length of phase I, after which the initial 

wavepacket has shaped itself into a LB. 

Thus, STC is responsible for the breaking of the ST symmetry of ultrashort wavepackets 

propagating through FAs. STC imprints asymmetry onto the spectra of LBs, to which all 

excitations of sufficient energy are attracted. While spectral asymmetry is a property of the 

stationary solution, in the next section we will show how it also influences the dynamics of LB 

evolution. 

5.3.2 Superluminally Decaying Light Bullets 

In Section 5.2 we have discussed the LB decay mechanism, which is driven by the growth of the 

coupling constant experienced by the LB, that is undergoing Raman-induced red-shift. In this 

chapter we have found that the increase of the coupling strength with increasing wavelength is 

the very essence of STC. It is thus obvious that STC and LB decay are linked and the LB decay 

must be influenced by STC. We have also discussed that STC is linked to the concept of group 

velocity, and we will thus evaluate the group velocity of the LB, especially its behavior during 

decay. 

By now it should have become clear that it is good practice to first investigate Eq. (27), the STC 

extended NLSE model. Here specifically we investigate the deviation of the pulse’s center of 

gravity from that predicted by assuming propagation with the group velocity of the isolated WG 

𝑣𝑔
(0), which we term luminality. It is defined as  
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where 𝑎𝑛𝑚,𝜏 ist the time derivative of the modal amplitude. As per the construction of the LB 

solutions they are stationary. This means that they move with 𝑣𝑔
(0), i.e., the group velocity of the 

isolated WG, without acceleration. The two terms in the third line of Eq. (33) are therefore in 

equilibrium. After straightforward, albeit lengthy calculation, one can show that the first term is 

always constant, i.e., 𝑑𝑑 𝑑𝜁⁄ = 0, such that any acceleration of the pulse, if there is any, is 

proportional to the STC coefficient 𝛼1. One can further show that 𝑑𝑑 𝑑𝜁⁄  and thus the 

acceleration of the pulse location 𝑑2〈𝑇〉 𝑑𝜁2⁄  has only nonlinear contributions of the order 

𝒪(𝑎4). Thus, there is no pulse acceleration after the LB has decayed into low-power dispersive 

waves with low peak energy. Acceleration can thus only take place during LB decay when the 

non-accelerating stationary solutions no longer apply but powers are still sufficiently high to 

have a considerable value of 𝑑. A closer analysis of 𝑑 reveals, that it is essentially a discrete, 

spatial autocorrelation function. For a hexagonal lattice its values are limited to −3 ≤ 𝑑 ≤ 6, 

where the high value applies to in–phase Bloch-waves in the center of the Brillouin zone and the 

low value applies to Bloch-waves at its edge. For a completely localized solution, which is a 

decent approximation for high power LBs 𝑑 = 0. As the LB bifurcates from the top of the band-

structure, and thus from the mode in the centre of the first Brillouin zone, the LB preferably 

decays into this mode and we expect 𝑑 to grow from 𝑑 = 0 to 𝑑 = 6 during LB decay. 

These simple considerations already give a pretty good idea on the limits of group-velocity 

evolution of a LB. The LB initially propagates with 𝑣𝑔
(0) and retains this velocity as long as it is 

stationary, i.e., until it decays. During decay this equilibrium slowly breaks and acceleration, 

proportional to 𝛼1 occurs until power levels have dropped and bring the acceleration to a halt. 

The final result is a wavepacket with a luminality of  𝑑〈𝑇〉 𝑑𝑧⁄  of less than but close to 12𝛼1. 

The validity of the hypothesis was tested using a dynamic simulation of the NLSE. As an initial 

condition we took a LB with an energy of 𝐸0 = 11.06 and propagated it numerically using Eq. 

(27) and a value of 𝛼1 = −0.1. No decay and therefore no speedup can be observed, because the 

LB is, per definition, a stationary solution of this equation and does not change upon 
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propagation, in particular if there is no Raman term, which leads to redshift and LB decay. 

However, we introduced additional, artificial loss, such that the energy dropped according to 

𝐸(𝜁) = 𝐸0exp(−0.06𝜁) and the LB decays at 𝜁 = 2.65, because there its energy has dropped to 

the threshold value of 𝐸min = 9.44. 

 
Fig. 32: (a) Power evolution in the central WG of a FA for a LB with 𝛼 = −0.1 under the 
action of Eq. (27) with artificial loss, such that LB decay sets in at 𝜁 = 2.65 (gray line). The 
(white) line marks the the center of gravity 〈𝑇〉. (b, green line) Pulse energy and nonlinear 
phase shift of the pulse in (a), where the (red dots) mark certain propagation lengths on the 
trajectory. The (blue, dotted) line represents possible LB solutions with 𝛼 = −0.1. A separation 
of both lines marks LB decay. (c) Luminality 𝑑〈𝑇〉/𝑑𝜁 (red line) as measured from (a) and 
(blue circles) as calculated from Eq. (33). The decay point is marked by the (grey) line. The 
(black, dotted) line is the limit of the luminality of 12𝛼1. Figure adapted from [Eil11b]). 

Results of this simulation are displayed in Fig. 32. Subfigure (a) shows the evolution of the 

power in the central WG of the FA. The pulse, which is initially stationary, accelerates close to 

the region of decay and then again settles out at a constant speed. The validity of the location of 

the point of decay is confirmed by Fig. 32(b). The trajectory of the pulse’s energy and phase shift 

follows that of the LB solutions, until its energy drops below the threshold energy 𝐸min, close to 

the predicted decay position at 𝜁 = 2.65. Fig. 32(c) displays the luminality, derived from the 

center of gravity curve in Fig. 32(a) and the calculated value as per Eq. (33), which coincide 

perfectly. The above established maximal value for the luminality of 12𝛼1 is marked by the 

dashed line and approached, as predicted. A similar simulation without STC did not show any 

sign of pulse acceleration. 

Thus, the dynamics outlined above have been confirmed: STC indeed leads to superluminal 

pulse propagation after the decay of LBs. For a more physical understanding of the STC induced 

acceleration process we resort to a “nutshell” explanation. The central point is that LBs bifurcate 

from (and decay into) the mode at the center of the Brillouin zone, which has 𝜇 = 𝜈 = 0. Its 

inverse group velocity is given by 𝑣𝑔−1 = 𝛽1 + 12𝑐1. The LB, however, is well-localized and can, 

for the sake of simplicity, be described as propagating through a (nonlinearly) isolated WG. Its 

inverse group velocity is �𝑣𝑔
(0)�

−1
= 𝛽1, where 𝛽1 is the derivative of the longitudinal 

wavenumber of the WG at the carrier frequency, as introduced in Chapter 4. The difference 
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between the two values is nothing but the luminality 𝑑〈𝑇〉/𝑑𝜁. The STC induced superluminal 

pulse propagation during LB decay is therefore a consequence of the modal dependence of the 

group velocity of the FA. In fact, very large values for the modal dependence of the group 

velocity dispersion in 1D silicon nanowire arrays [Gor10] have been reported before – STC 

based effects could therefore be even more dominant in such systems. 

 
Fig. 33: (a) Experimental delay measurement for a type I sample with (blue, dotted line) 
𝐿 = 20 mm and (black, solid line) 𝐿 = 60 mm as a function of the excitation pulse energy. 
Roughly 80 nJ are needed to excite a LB. (b) Pulse arrival difference between a 𝛼1 = 0 and 
𝛼1 = −0.1 simulation. Very little difference is observed for 𝑧 < 40 mm, where LB are stable. 
Pulses with STC (i.e., 𝛼1 = −0.1) arrive considerably earlier if 𝑧 > 40 mm, i.e., after LB 
decay. Figure adapted from [Eil11b]). 

The relative pulse speedup for type I FAs can be estimated to be 𝛿𝑣𝑔 𝑣𝑔
(0)⁄ ≈ 10−4 … 10−3. 

Experimental verification of the superluminal decay, however, needs an indirect approach. The 

group velocity cannot be directly observed outside of a sample. Direct observation of speedup in 

this scale is unpractical as it would require a very precise sample-cutback technique with an 

extremely repeatable coupling scheme. Time-of-flight measurements are, however, feasible. 

Under the conservative assumption of a relative speedup of 2 ⋅ 10−4 during decay and a length 

of 20 mm after the point of decay the time of arrival will change in the order of 20 fs. This is 

well above the 1 fs level of accuracy and repeatability of the iXCorr scheme. 

Time-of-flight measurements need a well-defined reference time. Due to a lack of other 

references we resort to use the dispersive waves generated early in the LB evolution process as a 

reference. They do not experience speedup. As the LB is concentrated mostly in the central WG, 

whereas the dispersive waves are spread throughout the FA, we measure the delay Δ𝑇 = 〈𝑇𝐶〉 −

〈𝑇𝑂〉, where 〈𝑇𝐶〉 is the temporal center of gravity of the pulse in the central WG of the FA and 

〈𝑇𝑂〉 is the temporal center of gravity of the pulses of all other WGs. 

Results for such measurements in type I samples are displayed in Fig. 33(a). The dashed line 

represents a short sample with 𝐿 = 20 mm where the LBs have not yet decayed and no speedup 

is excepted and the solid lines represents a long sample with 𝐿 = 60 mm, where the LBs have 

decayed 10 to 20 mm before the end of the sample. Both curves exhibit a general trend towards 
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later arrival for pulses with more input energy. This is due to the stronger redshift and thus lower 

average group velocity experienced by pulses with higher input energy. For the short sample the 

increase of the delay is more or less monotonic. However, for the long sample this monotonic 

increase is interrupted by periodic decreases. The ditches have a periodicity of roughly 80 nJ. 

Similar energy levels have been identified with the excitation of the first and second LB in 

Section 5.2. The depths of the ditches have a value in the range of 20 to 30 fs and coincide well 

with the expected reduction of the delay of 20 fs. 

We therefore argue that the observed ditches are an experimental proof for superluminal pulse 

propagation induced by the decay of the LBs. They are a direct consequence of STC. They occur 

only for energies which are sufficient for the creation of LBs, only for lengths where LBs have 

already decayed, and with a magnitude very close to the expected value. 

These results are augmented by numerical simulations of the UME model. As opposed to the 

experimental scenario here we can turn STC off at will and also measure the relative delay at any 

propagation distance. Fig. 33(b) therefore displays the difference in the delay for otherwise 

identical simulations with 𝛼1 = 0 and with the level of STC expected for a type I FA. This 

difference is termed simulated model delay Δ𝑇sim. It can be seen that the two models exhibit no 

considerable timing difference for samples up to a length of 40 mm, consistent with the 

assumption that superluminality is linked to LB decay. After the point of decay at 𝑧 > 40 mm 

the pulses of the model with STC, however, appear much earlier than those of the model without 

STC, which further proves the validity of our model. The reduction of Δ𝑇sim for very long 

samples can be explained by the fact that the leftovers of the LB have then spread over the 

complete FA and the applied definition of the delay Δ𝑇 is no longer meaningful. 

We have therefore shown that STC is responsible for superluminal propagation and profoundly 

affects the dynamics of ultrashort pulse propagation in FAs . Moreover, we have given a simple 

and physical explanation of the underlying physics and have been able to demonstrate the effect 

experimentally. In summary, we have shown that ST wave propagation in DO is an interesting 

system to study the effects of STC. More specifically, we have investigated the impact of STC on 

LBs and have shown that it influences the static, as well as, the dynamic properties of LBs in a 

way which is both measurable and can be understood from fundamental physical concepts. 

5.4 Vortex Light Bullets 

Up to now we have mainly investigated fundamental LBs and the impact that intrinsic 

asymmetries have on their static and dynamic properties. Section 5.2 dealt to a large extend with 

the impact of the temporal asymmetry of the nonlinear response, whereas Section 5.3, was 
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dealing with the temporal asymmetry of the spatial response of the system. All of these 

asymmetries are, however, fixed for a certain experimental system. They can be tuned by 

changing the system’s geometry but to some extend only. The logical next step on the road 

towards a comprehensive understanding of LBs is to investigate the impact of a tunable 

asymmetry that can be superimposed externally onto the system. 

Here we focus on the effects of a particular, spatial asymmetry that can be imposed by the 

variation of the spatial shape of the excitation. More specifically, we investigate the propagation 

of DO ST wavepackets with orbital angular momentum (OAM). 

Optical wavepackets are said to have OAM [Poy09, Jac06, MT07], if they have an azimuthal 

variation of the optical phase around a certain center of symmetry, such that the optical phase 

varies by an integer multiple 𝜋 of 2𝜋 during one revolution [Nye74]. 𝜋 is called the topological 

charge of the field and is quantum optically [Enk92] related to the angular momentum of the 

photons propagating in this mode. It is related to the polarization state of the light in the same 

way that angular momentum is related to spin [Bet36, He95, Sim97]. The most prominent 

examples of fields with OAM in free space are Gauss-Laguerre modes [All92], which can be 

generated from Gauss-Hermite laser modes [Bei93]. Other techniques for the generation of 

OAM fields are based on imprinting a spiral phase with an appropriately shaped phase plate 

[Bei93] or using static [Baz90] or dynamic [Cur02] gratings with an 𝜋-fold fork dislocation. A 

generalization of the grating concept is to nonlinearly generate [Blo12] or modify [She13] OAM 

fields in twisted photonic crystals. 

Fields with OAM [All99, FA08] have recently gained a lot of attention, due to their mutual 

orthogonality, which allows them to be used in mode division multiplexing schemes for high-

throughput parallel data transmission [Gib04, Wan12]. 

The interaction of OAM with nonlinear waves in DO systems has so far resulted in the 

observation of discrete Vortex Solitons of various flavors [Fir97, DT00, Mal01, Nes04, Des05a, 

Ter09, Ter10] and the deviation of a simple stability rule [Kar05]. See also Section 4.1 for an 

overview. Here we just mention that 2D FAs, which support discrete solitons, in general also 

support discrete vortex solitons. In the course of this section we will show that the same is true 

for VLBs. More precisely we investigate compact triangular VLBs in type I fiber FAs. These 

have been subject of a previous numerical study LeBlond et al. [Leb11], where they have been 

found to be numerically stable in an NLSE model. This report showed similar results for VLBs 

with a larger spatial extend and follows a similar numerical investigation of VLBs [Leb08] in 

square arrays with comparable results. We therefore claim that the fundamental compact 

triangular VLB, although the simplest discrete VLB possible, is generic for a large class of 
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VLBs. 

Compact triangular VLBs are compound LBs, where the main part of the energy is equally 

distributed in a triangle of three neighboring WGs. The pulse shape in each of these WGs is 

synchronized and identical with that in the other two WGs but has a mutual phase shift of 

±2𝜋/3 with respect to the other two WGs. As such compact triangular VLBs only exist with 

OAMs of 𝜋 = ±1, where the sign is of basically no influence because the FA exhibits helical 

symmetry, i.e. it is not twisted long the axis of propagation. 

Following the established route we start by investigating the stationary VLB solutions of Eq. 

(19) to establish their parameters and check for stability. The solution method for this 

intrinsically complex field is the same as the one introduced in Section 5.3, however, we neglect 

STC. We solved for fundamental LBs, triplet LBs (LB compounds similar to VLBs but without 

OAM), and VLBs by applying appropriate initial conditions and symmetry restraints on the 

solutions.  

 
Fig. 34: Families of various LB solutions of the NLSE. Displayed is the energy 𝐸 vs. the 
nonlinear phase shift 𝑖 of (red) VLBs, (Green)  triplet LBs, and (blue) fundamental LBs 
(energy multiplied by three). (black, dashed) The minimal energy 𝐸thresh  and the corresponding 
nonlinear phase shift 𝑖thresh . (black, dash-dotted) The solution with the minimal nonlinear 
phase shift 𝑖min. Figure adapted from [Eil13c].  

Results are displayed in Fig. 34, which displays the VLB energy as a function of the nonlinear 

phase shift 𝑖. As the average energy of the compound LBs is, of course, higher that the energy of 

a fundamental LB, the curve for the fundamental LB is magnified by a factor of three. The 

reduced minimum wavenumber 𝑖min for VLBs, if compared to triplet LB and fundamental LBs, 

shows that VLBs do not bifurcate from the top of the Bloch-band. This is not surprising because 

the flat-phase mode in the center of the Brillouin-zone and any field with OAM 𝜋 ≠ 0 are 

orthogonal. In comparison VLBs have the largest energy at any fixed value of 𝑖 > 9, such that, 

from an energetic point of view, a decay into a triplet LB or three fundamental LBs seems 

possible. 

Next we investigated the stability of the three classes of LBs. In Section 5.2 we had found that 
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for fundamental LBs all solutions with 𝑖 > 𝑖thresh are stable, which was consistent with the 

Vakhitov-Kolokolov theorem [Vak73]. This theorem, however, only applies to the first nonlinear 

state, i.e., the one with lowest energy and thus not to compound LBs. The stability analysis for 

triplet LBs and VLBs was thus carried out by numerically propagating the fields with numerical 

noise. Noise sources were uncertainties of the initial field and integration errors. Their impact 

has been tested by varying the temporal resolution, the integrator step size, and by adding noise 

onto the initial solutions. No qualitative impact on the evolution of the solutions was evident. 

We found that, as expected, triplet LBs are always unstable. The situation is more difficult for 

VLBs. The evolution of the deviation 𝑟 from the initial field shape as a function of the nonlinear 

phase shift 𝑖 for a fixed propagation length is plotted in Fig. 35(a). Two regimes can be clearly 

distinguished. VLBs with a small nonlinear phase shift 𝑖 < 𝑖crit = 19.2 𝑧0−1  are unstable, 

exhibiting exponential noise growth, as can be seen in Fig. 35(b). They decay into a fundamental 

LB and into dispersive radiation, as is shown in Fig. 35(c).  Solutions with large nonlinear phase 

shift 𝑖 > 𝑖crit have a different evolution behavior. They initially seem to be stable until the three 

main constituents desynchronize into three fundamental LBs, as shown in Fig. 35(d). This 

transition is accompanied by sudden, non-exponential noise growth, as can be seen in Fig. 35(b). 

Exponential growth would, however, be expected for modulational instability. We therefore term 

these VLBs to be semistable. Because the transition occurs on length scales, which are much 

larger than typical sample lengths (e.g., 𝐿 ≈ 140 mm, for type I arrays), they can be considered 

stable in the context of our experiments. 

This desynchronization decay of semistable VLBs is another nonlinearity-triggered, 

spatiotemporal transition of LBs. It coincides with the findings of [Leb08], predicting similar 

results for square arrays. Our findings complement those in [Leb11], who, in the same hexagonal 

geometry, predict a slightly lower value for 𝑖crit ≈ 16.4 𝑧0−1 and stability for all 𝑖 > 𝑖crit. The 

difference might be due to the “temporal filtering” method employed in [Leb11]. 

The experimental setup is the same as that for experiments with fundamental LBs, discussed in 

Section 5.2, employing the iXCorr scheme introduced and discussed in Section 3.1. A schematic 

representation was already shown in Fig. 24 in Section 5.2. OAM is imprinted onto the 

excitation field with a threefold-symmetric, discrete phase plate, the details of which have been 

described in Section 2.3. The discrete phase plate is an adaptation of the spiral phase plate 

technique for discrete optical systems and generates a focal field distribution that is sufficiently 

similar to the field distribution of VLBs to guarantee a high coupling efficiency to the discrete 

vortex field. 
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Fig. 35: Stability of VLBs. (a) Perturbation log (ε) at z = 3.4 z0. Stability transition at 
b ≈ 19.2 z0−1. More details given in (b-d) for the circled values. (b) Growth of perturbation 
log (ε) as function of propagation length, where 𝑟 = ∑∫��𝑎𝑛𝑚

(0) (𝑡)� − |𝑎𝑛𝑚(𝑧, 𝑡)|� is the 
deviation of the modulus of the solution 𝑎𝑛𝑚(𝑧, 𝑡) from the initial state 𝑎𝑛𝑚

(0) (𝑡). Exponential 
growth for the unstable (green) and sudden onset growth for the semistable (blue) solution. 
(c,d) Evolution of the temporal pulse intensity for the three main WGs for (c) an unstable 
solution and (d) a semistable solution. The WGs are color coded into the red-green-blue (RGB) 
channel respectively. Figure adapted from [Eil13c]. 

Already in the linear regime a considerable difference in the propagation of discrete and 

continuous vortices is evident at the end of the FA. In homogeneous media the vortex character 

of the field in general has to be visualized using interference with a reference field of different 

OAM, producing a characteristic spiral mode-beating pattern [All03, FA08]. This is not the case 

for discrete vortices. In Fig. 36(a) and (b) experimental and simulated images of the light 

distribution after linear propagation of the vortex field through 17 mm of a type I FA are 

displayed. The triangular symmetry of the field is obvious. The OAM of the field is directly 

manifested in the observed intensity. One can observe a diffraction pattern with interdependent 

radial and azimuthal field distributions in a distinct corkscrew pattern in Fig. 36(a) and (b). The 

peculiar properties of discrete diffraction in WA can therefore be used to directly image vorticity 

in optical fields. We therefore propose to use FAs for the interference-free measurement of OAM 

modes [Min10b]. 

 
Fig. 36: (a) Simulated and (b) experimental diffraction patterns in the linear power regime of a 
type I FA of 𝐿 = 17 mm. (c) Experimental diffraction pattern in the same FA in the VLB 
power range. Increased contrast of the center compared to the outer WGs is observed. Figure 
adapted from [Eil13c]. 
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Fig. 36(c) shows an image of the light distribution at the end of the same FA but at a much higher 

input energy. The energy was chosen such as to be roughly three time the input energy that was 

determined to be required for the excitation of a fundamental LB. An increase in localization is 

observed. This increase of spatial contrast can be observed for 250 nJ < 𝐸 < 300 nJ and we will 

confirm below that VLBs are actually observed in this energy range. 

We will now again turn to UME simulations to identify energy ranges and sample lengths for 

which stable VLBs can be observed in type I FAs. A thorough analysis of the UME data is again 

necessary because at this point it is still unclear if and how VLBs are robust against the intrinsic 

asymmetries of the realistic model and against the residual extrinsic asymmetries that are related 

to a possibly asymmetric and imbalanced excitation of the three main WGs of the FA. To 

differentiate between these two perturbation mechanisms we ran two sets of simulations. In the 

first set of simulations we injected three 2𝜋/3  phase shifted, otherwise identical 50 fs Gaussian 

pulses into the three central WGs of the FA to determine the energy range and sample length 

range in which VLBs can be observed. Both of these values cannot be taken directly from the 

NLSE data discussed above, because the laser pulse duration is much longer then the VLB 

duration and thus their excitation is accompanied by dispersive wave generation as discussed 

before. 

 
Fig. 37: UME simulation of the relative energy content of the brightest pulse in the three main 
WGs as a function of the input energy. A sudden increase at 𝐸 ≈ 260 nJ denotes the 
localization threshold. The VLB energy range is marked in (green). Figure adapted from 
[Eil13c]. 

For the UME simulation we find an increase of roughly 20% in the localization of the output 

field distribution in the energy range of 260 nJ < 𝐸 < 300 nJ, as can be seen in Fig. 37. Typical 

propagation dynamics in this energy range are displayed in Fig. 38. The pulse duration in the 

central WG is consistently below 30 fs if the sample length is shorter than 𝑧max < 17 mm, as 

displayed Fig. 38(b). Moreover, in this sample length range the evolution of the pulse duration is 

subdispersive as can be seen by comparing with the pulse broadening behavior of hypothetical, 

dispersively broadened pulses, marked by the purple lines. The three pulses are also temporally 

synchronized in this range, as can be seen from Fig. 38(c). Subfigure (d) proves that the pulses in 
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all three WGs are phase-locked to a nonlinear attractor. It is located at a relative phase shift of 

Δ𝜑12 = 2𝜋/3  and Δ𝜑13 = 4𝜋/3, where Δ𝜑12 is the phase shift between then 1st and 2nd and 

Δ𝜑13 is the phase shift between the 1st and 3rd WG of the FA. Both phase shifts are measured at 

the respective pulse peaks. The figure shows the trajectory of Δ𝜑12 and Δ𝜑13. The state of the 

system orbits around the phase lock point in the center on a damped trajectory. This behavior is 

expected for a stable VLB solution, which is a nonlinear attractor. The initial pulse contraction 

takes roughly 𝑍min = 5 mm, such that we observe VLB propagation for 𝐿VLB = 12 mm, 

equating into 𝐿VLB = 2.5 〈𝐿Disp〉 ≈ 1.5〈𝐿Diff〉. VLBs are therefore stable for identical excitations 

with a stability range of roughly half that of fundamental LBs as seen by comparing to the values 

stated in Section 5.2. 

 
Fig. 38: UME Simulation of VLB propagation for excitation with three identical 50 fs pulses 
with 2𝜋/3 relative phase shift and total energy 𝐸 = 265 nJ in a type I sample. (a) Power 
evolution in the three central WGs of the FA. Each WG’s contribution is coded into the image’s 
RGB channel - gray denotes synchronous propagation. (b) FWHM in the central WGs. The 
(purple, dashed) line shows hypothetic linear dispersive broadening. The (purple, dotted) line 
shows that linear dispersive broadening describes pulse’s behavior well after 𝑧 > 17 mm. (c) 
Peak delay of the pulse in the 2nd and 3rd WG with respect to the 1st as a function of the 
propagation length. Onset of desynchronization for distances 𝑧 > 30 mm. (d) Phase difference 
of the pulse in the 2nd and 3rd  WG with respect to the 1st. Propagation length 𝑧 color coded. 
Figure adapted from [Eil13c]. 

The purpose of the second set of simulations is to establish the stability of VLBs against 

inevitable, residual coupling asymmetries. We therefore repeated the first set of simulations, 

however with the energy of the input pulse in the second WG reduced by 5% and in the third by 

10% with respect to that in the first, while maintaining a constant total energy. Linear excitation 

with 𝐸 ≪ 100 nJ does not produce VLBs but no temporal desynchronization and other 

symmetry breaking is observed due to the absence of nonlinearity. In the slightly nonlinear 

regime, with 100 nJ < 𝐸 < 260 nJ we observe rapid energetic desynchronization, i.e., 
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fundamental LBs develop in one or two of the WGs but no VLB. This is consistent with the 

decay scenario of unstable VLBs discussed in the initial paragraphs of this section. If the energy 

is in the range of 260 nJ < 𝐸 < 300 nJ, we observe spatial localization and temporal, as well as, 

energetic synchronization and phase locking, hence VLB propagation. If the input energy is too 

large 𝐸 > 300 nJ we observe rapid temporal and energetic desynchronization  and the generation 

of individual, desynchronized fundamental LBs in all of the central WGs.  

 

Fig. 39: UME Simulation of VLB propagation for excitation with three 50 fs pulses with 2𝜋/3 
relative phase shift and initial energy reduction of 5% in the 2nd  and 10% in the 3rd WG at a 
total energy of 𝐸 = 265 nJ. (a) Instantaneous power in the three central WGs. Each WG’s 
power is coded into one of the image’s RGB channel. Gray denotes synchronous propagation. 
Regions of stationary VLB propagation are shaded in green. Regions with desynchronization 
are white. (b) VLB energy content during propagation. The subdiffractive region (𝑧 < 20 mm) 
is red. (c) Relative energy content of each WG compared to average energy. Regions with 
energy synchronization (𝑧 < 17 mm) are (red). (d) Peak delay of the pulse in the 2nd and 3rd 
WG with respect to the 1st. Regions with temporal synchronization (𝑧 < 17 mm) are (red). (f) 
Evolution of phase shift of the 1st  WG with respect to the 2nd and 3rd. Propagation length color 
coded. Figure adapted from [Eil13c]. 

A typical simulation result in the VLB regime for 𝐸 = 265 nJ is displayed in Fig. 39. We 

observe temporal synchronization to less than 5 fs for 𝑧 < 17 mm as displayed in Fig. 39(a) and 

(d), with phase synchronization to less than 10% of the respective phase difference of 2𝜋/3 as 

shown in Fig. 39(e). The data in Fig. 39(b) underlines the sub-diffractivness of the wavepacket. 

As opposed to higher powers the peaks exchange energy periodically, as seen in Fig. 39(c), and 

approach equilibrium for 𝑧 < 17 mm. At longer propagation lengths desynchronization into 

multiple fundamental LBs is in all three WGs is observed. This is again consistent with the decay 

by desynchronization for semistable VLBs discussed in the initial part of this section. 

Thus for a specific range of energies VLB propagate for lengths up to 17 mm, even with slightly 

asymmetric excitation. Longer samples and larger energies do not support VLBs, but 

desynchronized fundamental LBs. 

Experimental observation of VLBs relies on indirect observation methods. We have investigated 

type I samples of three different lengths, where the shortest has a length of 𝐿 = 13.6 mm, such 

that VLBs can be observed. The second sample has a length of 16.9 mm, slightly too long for 

VLB observation, yet short enough to observe the immediate products of VLB decay, i.e., three 
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temporally desynchronized fundamental LBs. Note that from simulation data for samples with a 

length of 16.9 mm we should still observe VLBs, whereas in experiments we found that the 

maximal length for VLBs is roughly 15 mm. We attribute the difference to having a larger 

coupling asymmetry than assumed in the simulations. The longest sample with 𝐿 = 29.9 mm is 

much too long for VLB observation and is used to study the decay products of VLBs and their 

consistency with the energy ranges predicted in the simulations. 

 
Fig. 40: iXCorr data for a short type I sample. (a) Relative energy content of the 2nd and 3rd 
WG with respect to the 1st. (b) Relative peak delay of the 2nd and 3rd WG with respect to the 1st. 
(red bands) Regions of energetic and temporal synchronization are defined by the respective 
uncertainties. (green bands) Regions of VLB existence are judged by predicted energy ranges, 
temporal, and energetic synchronization. (1-4, left column) Spatiotemporal iXCorr data of the 
three central WG modes at energies denoted in (a). (1-4, right column) 3D cross-correlation, 
isointensity plots of the same data. Figure adapted from [Eil13c]. 

For all samples we have carried out power scans to observe the four characteristic regimes 

discussed above: linear propagation at 𝐸 ≪ 100 nJ, decay into individual LBs for 100 nJ < 𝐸 <

250 nJ, VLBs for 250 nJ < 𝐸 < 300 nJ, and generation of multiple, unsynchronized, 

fundamental LBs for 𝐸 > 300 nJ. We consider VLBs to be present, if simultaneous energetic and 

temporal synchronization in the three central WGs of the FA is observed. Energetic 

synchronization means that the quotient of the energy in the 2nd or 3rd WG with respect to the 1st 

is between 0.9 and 1.1, i.e. not larger than the energetic asymmetry of the excitation. Temporal 

synchronization is achieved if the center of gravity of the main pulse of the 2nd and 3rd WG are 

delayed with respect to the 1st WG by no more than 10 fs, i.e. no pulse is shifted with respect to 

the other ones by more than a single optical cycle. 

Results for the short sample are displayed in Fig. 40. Subfigure (a) displays the relative energy in 
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the 2nd and 3rd WG with respect to the 1st WG. Fig. 40(b) displays the relative delay between the 

main peak in the 2nd and 3rd WG with respect to the 1st WG. In the linear regime, where no 

nonlinear reshaping takes place the pulses are initially energetically synchronized and almost 

temporally synchronized. As soon and the energy is increased into the nonlinear regime to 

energies that are not yet sufficient for the generation of VLBs the energy becomes unevenly 

distributed with a pulse in single WG having the highest energy. In the predicted VLB energy 

range 250 nJ < 𝐸 < 300 nJ this asymmetry is lifted and the pulses appear at the end of the FA 

temporally and energetically synchronized to within the accuracies of the measurement method. 

Higher energies again lead to the excitation of asynchronous waves. A more detailed insight into 

the pulse shape for an exemplary pulse energy in each of the regimes is given in the right half of 

Fig. 40. Here the cross correlation traces of the three central WGs and their representative 3D 

plots are displayed. This underlines the qualitative difference in the four regimes: no reshaping 

for linear excitation, excitation of a fundamental LB for intermediate energies, consistent with 

the decay of an unstable VLB, excitation of fully synchronized VLBs for higher energies, and 

excitation for multiple, fundamental LBs for excessively high energies. All these findings are 

constituent with the simulations discussed above. 

Results for the longer samples are displayed in Fig. 41. No synchronization and thus no VLBs 

are observed, as expected. Note, however, that the 𝐿 = 16.9 mm sample, which is just a little bit 

longer than the maximum VLB range, exhibits an onset of synchronization, with almost identical 

energies in all three WGs and very little delay between the pulses in the 1st and 2nd WG visible in 

Fig. 41(a) and Fig. 41(c). This is in accordance with simulations, predicting decay into 

temporally desynchronized, fundamental LBs at maximum VLB propagation length. Data for a 

much longer sample is displayed in Fig. 41(b) und Fig. 41(d). Here even more asymmetry can be 

observed, an onset of synchronization is no longer visible. Subfigures (1) and (2) depict 

exemplary cross-correlation data for an energy where VLBs would be observed in shorter 

samples. 

In summary in this section we have shown that VLBs, i.e., LBs with OAM, can be excited and 

observed in FAs. These VLBs are so far the, arguably, most complex solitary waves ever 

observed in an experiment. Using rigorous simulations we have established that the OAM is a 

key element in stabilizing these compound LBs against decay. They exhibit a new mode of 

stability, which we termed semi-stability, that is characterized by a considerable length of 

stationary propagation and then decay into temporally desynchronized, fundamental LBs. This 

stability is retained under the influence of intrinsic asymmetries, such as higher order dispersion, 

the Raman effect and discrete space-time coupling. VLBs are also robust against a certain level 
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of asymmetries caused by inevitable, experimental issues. 

 
Fig. 41: iXCorr data for longer type I samples. (left) A sample with length L = 16.9 mm, just 
longer than maximal experimental VLB propagation range. (right) A sample with L =
29.9 mm. (a,b) Relative energy content of the 2nd and 3rd WG with respect to the 1st. (c,d) 
Relative peak delay of the 2nd and 3rd WG with respect to the 1st. (red bands) Regions of 
energetic and temporal synchronization. (1,2) Spatiotemporal iXCorr data of the three central 
WG modes at energies and samples denoted in (a) and (b). Figure adapted from [Eil13c]. 

If considered together with the results of Sections 5.2 and 5.3, VLBs are not just an even more 

complex version of fundamental LBs. They are rather a first experimental demonstration of the 

richness of the physics of spatiotemporal solitary waves, that can be achieved by explicitly 

arranging for external asymmetries, here the introduction of OAM. As opposed to internal 

asymmetries discussed in the prior sections, external asymmetries are not a fixed part of the 

system but can be chosen arbitrarily. VLBs therefore open the route towards a versatile LB 

“chemistry”, where fundamental spatiotemporal constituents can be fused into compound objects 

with entirely novel properties. 

The observation and characterization of LBs and VLBs, although they put an end to the long 

scientific debate as to whether LBs can really be observed in an experiment, are therefore not a 

singular, solitary scientific event but, as we firmly believe, open an entirely new perspective for 

nonlinear wave research adding a very interesting field of possible future exploration. 
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 Conclusions & Outlook 6.
In this thesis, we have made a contribution towards the development of spatiotemporal, nonlinear 

optics. Contributions in the field of spatiotemporal pulse generation and analysis have been 

driven by the quest for the observation, characterization, and understanding of various families 

of discrete Light Bullets (LBs) and developed in parallel to that. In this chapter we shall first 

give a brief summary of the results that have been obtained in this thesis and then discuss 

potential ramifications thereof as well as possible future directions of research, which are 

indicated as potentially fruitful by the results obtained here. 

Starting from commercial facilities for the generation of high-power, femtosecond, pulsed light 

sources at variable wavelengths in the near infrared we have implemented a spectral pulse shaper 

to generate pulses with arbitrary temporal profiles, at high peak powers, with a high throughput 

and without imaging aberrations. Spatial pulse shaping into a pulse with discrete orbital angular 

momentum was demonstrated with a discrete spiral phase plate technique. We gave an outlook 

onto a concept that might eventually lead to a truly spatiotemporal pulse shaping device. The 

concept is based on recent advances in the field of multicolor metamaterial holograms and would 

extend the concept of metasurface beam shaping into the spatiotemporal domain. 

Equally essential for the observation of LBs was the development of spatiotemporal pulse 

analysis techniques with femtosecond resolution. Initial experiments have been carried out with a 

spatiotemporal cross-correlation technique (iXCorr), which reconstructs the spatiotemporal 

intensity of a pulse with a resolution of 30 … 70 fs. The technique is, however, unable to 

reconstruct the optical phase, and it is unsuitable for reference pulse deconvolution.  On the other 

side it is a relatively simple and robust technique and does not require long measurement times. 

Aiming to mitigate all disadvantages of iXCorr, we developed an imaging cross correlation 

FROG scheme (ImXFROG). It is implemented by augmenting the iXCorr setup with a tunable, 

interferometric wavelength filter. We demonstrated the transform-limitedness of LBs and 

analyzed a spatiotemporally distorted Airy pulse. ImXFROG achieves a resolution of less than 

10 fs and can measure the spatiotemporal intensity and phase of a pulse on more than 107 

independent voxels. It is, to the best of our knowledge, the nonlinear, non-interferometric 

measurement technique with the highest number of independent data points presented, so far. 

Further developments include the construction of a scaled-down version of ImXFROG, called 

OXFROG. This device reconstructs spatiotemporal pulses with a single spatial dimension. It is 

therefore ideally suited to investigate the spatiotemporal dynamics of one-dimensional 

waveguide arrays or of highly symmetric two-dimensional systems, where full three-dimensional 
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mapping would be overkill. The former is an interesting perspective as nonlinear, spatiotemporal 

dynamics in waveguide arrays is underdeveloped, considering the amount of research that has 

been dedicated to their physics. OXFROG dispenses with the interferometric filter, yielding a 

simpler and more robust setup. It also reduces measurement times and thus allows for rapid data 

acquisition. 

In perspective we aim for the development of an inline spatiotemporal pulse analysis device, that 

can reconstruct spatiotemporal fields in a single-shot manner. The idea would be to arrange an 

array of downsized GRENOUILLE [O’S01] FROG devices in a plane just before a large size 

image sensor. Such an arrayed GRENOUILLE would then reconstruct one FROG trace per array 

element, much like a Shack-Hartman sensor [Pla01] reconstructs one intensity and phase 

information from each element of the microlens array in front of the camera sensor. Already with 

commercially available contemporary image sensors [gol06], e.g., with ~100 megapixels and 

9 µm pixel pitch, one could reconstruct 40 × 40  spatial FROG traces with 256 × 256 pixels per 

FROG trace. The GRENOUILLE elements would have to be scaled down to ~2 × 2 mm2, 

which is not too far from its current size of roughly 20 × 20 mm2. Ongoing developments in the 

field of large area, high resolution image sensors will further relax these requirements. 

We also presented Analysis-by-Control, a new concept for the rapid prototyping of experimental 

setups. It relies on the flexibility of contemporary pulse shaping devices and on the 

commutativity of linear optical elements. It aims for the unification of pulse generation and 

analysis. We demonstrated the locally resolved measurement of chirp and of the autocorrelation 

function of a spatiotemporally distorted pulse. However, just temporal and spatial adaptive pulse 

shaping is currently available, the full power of the concept will only be harnessed by emerging 

concepts for spatiotemporal pulse shaping. 

The concepts and devices for the spatiotemporal pulse generation and analysis have been 

developed in the service of the quest for the observation of discrete LBs. For this end we have 

also investigated the properties of various two-dimensional discrete optical environments for 

their spatiotemporal properties. We have identified femtosecond laser-written waveguide arrays 

and drawn fiber arrays as being suitable in this regard. We concentrated on drawn fiber arrays 

(FAs) for their regularity, high damage threshold, and ability to operate in the anomalous 

dispersion regime. 

The arrays’ properties, i.e. the strength of discrete diffraction, the dispersive properties, and 

nonlinear response, and their dependence on geometric variations, wavelength, and on each other 

have been investigated. We have argued that most of these properties modify a certain scale and 
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have no impact on the fundamental physics. They determine a typical sample length, pulse 

duration, and pulse energy. The most critical parameter is the temporal scale, which is just a few 

tens of femtoseconds for all feasible FAs. Such time sales are beyond the validity range of 

nonlinear Schrödinger models, we resorted to an advanced model for quantitative numerical 

simulations. This model includes dispersion to all orders, wavelength dependent discrete 

diffraction, and the instantaneous and non-instantaneous contributions to the Kerr effect. A 

systematic estimate of the relative impact of all important effects on pulses lead to the 

conclusion, that experimentally LBs would be generated together with a background of 

dispersive, supercontinuum radiation and that they would redshift. 

At the heart of this thesis was the experimental observation and characterization of various 

classes of LBs and the understanding of static and dynamics effects related to their evolution. We 

first focused on the observation of fundamental LBs. Fundamental LBs are those which are 

mainly concentrated in the central waveguide of the FA. They are, nevertheless, truly 

spatiotemporal entities, with static and dynamic properties that cannot be explained in the 

context of a temporal soliton in an isolated waveguide. 

Using a mixture of iXCorr measurements and rigorous simulations, later augmented by high-

resolution ImXFROG traces, we have shown that LBs indeed propagate in a stable manner 

through FAs for roughly ten dispersion lengths. They are shifted towards longer carrier 

wavelengths due to the non-instantaneous Kerr effect. This redshift induces the limited 

propagation length of LBs, because the LB energy threshold grows with increasing wavelength. 

Being a truly spatiotemporal effect that had neither been observed nor anticipated before, this 

evolution and decay mechanism was carefully investigated. 

The LB decay mechanism is driven by the asymmetric, non-instantaneous nonlinear response of 

the material, or to put it more abstract, by a mixture of the nonlinear and temporal response of 

the system. Another intrinsic source of such an asymmetric mixture of effects was thus also 

investigated, namely the wavelength dependence of the waveguide coupling strength, 

constituting a coupling of the spatial and temporal response of the system. Such a direct 

spacetime coupling (DSC) is currently a hot topic, as on superficial consideration it seemingly 

allows one to violate causality. DSC can be observed in FAs for pulses that are two orders of 

magnitude longer than in homogeneous environments. This makes FAs a potential playground 

for experimental verification of DSC effects. Here we found DSC did affect static and dynamic 

properties of the LBs. The former manifests in asymmetric spatiotemporal LB spectra, whereas 

the latter manifests in pulse speedup during LB decay. Both effects could be observed 

experimentally with results matching predictions from numerical and semi-analytic methods. 
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In a next step we investigated the impact of external asymmetry, imposed by exciting the sample 

with a pulse with discrete orbital angular momentum (OAM). We excited Vortex Light Bullets 

(VLB), which are located in a triangle of three neighboring waveguides and possess OAM. We 

found that VLBs have an intricate stability behavior: unstable, low-power solutions decay into a 

single, fundamental LB and dispersive waves. Their higher-power counterparts are semistable. 

They propagate over a considerable length without change until they desynchronize into three 

fundamental LBs without dispersive waves. VLBs have been observed experimentally. They can 

be found for samples up to a particular length and manifest in the simultaneous energetic and 

temporal synchronization of the light pulses in the three central waveguides of the FA at a 

particular range of excitation energies. These and other experimental findings agree perfectly 

with numerical simulations. We claim to have observed the most complex stationary, 

spatiotemporal, so far. Moreover, we have opened the perspective for the observation and 

understanding of ever more complex compounds of LB, whose diversity might be orders of 

magnitude richer than that for lower dimensional systems. As an example we like to emphasize 

that OAM for spatial waves is a scalar quantity, i.e. the symmetry axis of the vortex is fixed to 

the propagation axis, whereas for spatiotemporal waves the vortex may rotate around any axis in 

the (𝑥,𝑦, 𝑡)-space. As such we have just observed a very special kind of a whole class of VLBs. 

The thesis originally set out as a project to exploit the properties of drawn fiber arrays to push for 

the first observation of the discrete LB and “just” confirm their theoretical prediction. From a 

theoretical point of view LBs had been predicted to be highly symmetric entities of limited 

complexity and little internal dynamics. In reality we have found quite the opposite to be true. 

Light Bullets are highly active, dynamically evolving entities with unexpectedly complicated 

behavior. Thus we claim that we have opened the path to a new and exciting experimental 

research field in optics: the understanding of the dynamic effects of high-dimensional, 

spatiotemporal solitary waves and their interaction with the geometric properties of highly 

structured environments. Moreover, the unexpected and unpredicted richness of the dynamic 

features of Light Bullets has forced us to push the technological limits of pulse generation, pulse 

analysis and modelling, to a point where the progress made in these peripheral fields stand out as 

research results in their own right. Many results have potential application beyond the problems 

they have originally been conceived for. 

In the course of this thesis we could show that new and unexpected physics arises mainly from 

the perturbation of symmetries. While entities with broken symmetries are often less appealing 

from a fundamental point of view, we argue that they lead to a much deeper physical 

understanding of the system and themselves contain potential for possible future applications. As 
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such we propose that further investigation should follow the path established here of 

investigating LBs in reduced symmetry environments. So far we have analyzed the impact of 

intrinsic asymmetries and those that can be imprinted by asymmetric excitations. All experiments 

did, however, deal with periodic, longitudinally homogeneous lattices. It would therefore be of 

paramount interest to investigate the behavior of Light Bullets in non-periodic and/or 

inhomogeneous lattices. The former symmetry could, e.g., be broken by looking at LBs, which 

are located at edges or corners [Mih89, Pon91, Mak05, Sza07a, Hei09a] or by looking at LBs in 

geometries with defects [Mor03, MM06, Fre06]. Inhomogeneous lattices would require FAs with 

longitudinal variation. With the existing samples one might look, e.g., into the interaction of LBs 

with longitudinally twisted FAs [Ale09, Won12]. This would be interesting in the context of the 

generation and conversion of OAM [Blo12, She13] and has recently been investigated in the 

context of topological isolators [Rec13]. 

Another option for future investigations regarding the propagation of spatiotemporal solitary 

waves would be to study the collision of LBs, for which extremely rich dynamics has been 

predicted [Ait91b, Edm93, Xi06, Mih09b, Mih09a]. The interaction of any kind of solitary 

waves is of fundamental physical interest. This is particularly true for LBs because they are 

simultaneously affected by intrinsic asymmetries and have a high and anisotropic mobility due to 

their high-dimensional and discrete-continuous nature. Appropriate initial conditions could be 

achieved by installing a spectral pulse shaper in the excitation beam line of the experiment 

and/or by appropriate spatial pulse shaping setups. 

Even more geometric flexibility would be achieved by being able to excite LBs in laser written 

waveguide arrays, with arbitrary transversal and longitudinal geometries. The analysis of 

spatiotemporal effects in segmented waveguide arrays, which we have carried out, has 

demonstrated the potential of such an approach to design all-optical devices. In conjunction with 

the above proposed LB scattering experiments this could, e.g., again put LB routing and all-

optical switching of ultrashort pulses on the list of possible applications. Current spatiotemporal 

experiments in laser-written waveguide arrays are, however, not meaningful in the context of 

LBs. The reason is that laser-written waveguide arrays are currently not well-characterized in the 

anomalous dispersion regime. However, only in this regime can bright LBs be excited with the 

focusing Kerr nonlinearity. Fundamental work would thus have to be carried out until results 

may be expected. 

Another development in contemporary photonics with potential interest with regard to this thesis, 

is the development of fiber lasers with structured, active cores [Akh05]. Adoption of this 

technique into the fabrication of FAs would allow one to investigate dissipative effects that are 
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related to spatiotemporal gain, i.e. non-Hamiltonian spatiotemporal optics. Particularly 

interesting in this respect is the development of arrays of coupled-phase locked laser sources 

[Che01], with the vision of either surpassing the Townes limit or with the aim of building active 

optical, phased-array laser sources [Tan94, McM96, Han09, Sun13]. Another field, which would 

be opened with the introduction of gain, would be the investigation of spatiotemporal effects in 

two-dimensional 𝒫𝒫-symmetric [Ben98] structures. Continuous wave experiments in one-

dimensional 𝒫𝒫-symmetric [EG07, Mak08, Rüt10, Mak10, Suk10] structures are currently a hot 

topic as unexpected behavior, such as directional transmission [Ram10] or directional invisibility 

[Lin11] has been reported. 

While this outlook did, so far, largely focus on possible future developments that would be 

related to the spatiotemporal physics of LBs in waveguide arrays, we would also like to discuss 

the applicability of our results. The first observation of LBs and VLBs is of course interesting 

from a fundamental point of view. It is even more so as it catches up on almost twenty years of 

theoretical research. Nevertheless, judging from the perspective of an experimentalist, the range 

of immediate technical application for LBs is limited. Many applications, which have been 

proposed in the past, be they for the transport of quantized pieces of information and energy 

[Mol88, Nak91, Mec91] or for the self-routing [Ace96, Mor99b, Suk03a, Wil11] of data packets 

in large fiber interconnects might be realized in a simpler manner by other systems. 

Nevertheless, this thesis has, in our opinion three important effects on research and technology 

that deals with nonlinear waves and spatiotemporal optics. The impact for spatiotemporal optics 

is immediately evident: the methods and devices developed in this thesis, which we needed to 

generate and analyze LBs, are by no means bounded to this area of nonlinear optics. The 

technical improvements, that we made for the spectral pulse shaper allowed us to generate 

arbitrary pulse shapes, with a high throughput and very high beam quality. ImXFROG has 

demonstrated the reconstruction of spatiotemporal pulses of unprecedented complexity and 

pushed the limit for measurable pulse complexity in its class of techniques by two orders of 

magnitude. OXFROG promises to achieve the same for spatiotemporal pulses with one spatial 

dimension or radial symmetry. Moreover, it has the potential to turn the ImXFROG concept into 

a robust turn-key device without interferometers and without semiautomatic feedback loops. 

The impact on nonlinear wave research is more subtle. First it is interesting to note that although 

more than 15 years passed between the first prediction of the stability of discrete LBs and their 

observation, surprisingly little of the theoretical research of this period on the subject of LBs 

could be used directly for the observation of LBs or for the understanding of their evolution. This 

is particularly noteworthy as all the physical models and parameters, which we used in this 
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thesis, are well established and have been so for many years. We like to read this notion as a 

testimony to the essential purpose of experiments in physics and its role as a “pacemaker” of 

physical research. This is particularly noteworthy as photonics is a research area, where 

mathematical models are highly developed and can be solved, at least numerically, with 

comparatively little effort. Experiments in this respect act as an anchor for theoretical efforts, 

giving feedback as into which direction realistic models should be investigated and expanded. 

A third important impact is rooted in the role that nonlinear optics has often played in the 

understanding of nonlinear waves in general. As discussed in the introduction, nonlinear optics 

might be the experimentally most accessible environment to study nonlinear waves, which are 

ubiquitous in nature and technical systems. A recent example in this respect is the contribution of 

nonlinear optics to the understanding of Rogue waves [Sol07, Sol08, Akh09, Erk10]. Many 

systems, which support nonlinear waves are, however, intrinsically of higher dimension. In fact, 

ocean Rogue waves [Dra66, Hav04, Cha11] have two transverse degrees of freedom [Bir13]; 

transfer of results from fiber optical experiments into the realm of Rogue waves is therefore 

conceptually difficult. This thesis adds to the understanding of high-dimensional systems, not 

only by contributing to the observation and understanding of truly spatiotemporal solitary waves 

and nonlinear wave phenomena in general but also by developing and implementing methods, 

which will make future research in the same direction considerably easier and more fruitful.  
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 Zusammenfassung 7.
Ziel der vorliegenden Arbeit war die Beobachtung und Charakterisierung raumzeitlich 

selbstlokalisierter, solitärer Wellenpakete in zweidimensionalen, diskreten 

Wellenleiterstrukturen, sogenannter diskreter Light Bullets. 

Um dieses zu erreichen wurden Untersuchungen zu nichtlinearen, raumzeitlichen 

Propagationseffekten ultrakurzer Lichtpulse angestellt. Dabei wurde Augenmerk auf die 

Umsetzung, Weiter- und Neuentwicklung von Methoden zur Erzeugung und Charakterisierung 

raumzeitlicher Pulse und auf die numerische Modellierung raumzeitlicher Propagationseffekte 

von ultrakurzen, oktavenspannenden Pulsen gelegt. Da die Untersuchung raumzeitlicher, 

ultrakurzer Pulse eine aktive und junge Teildisziplin der Photonik ist, kann im Allgemeinen nicht 

auf etablierte Methoden zurückgegriffen werden. Entsprechende Techniken müssen aktiv und 

begleitend zum eigentlichen Experiment entwickelt und maßgeschneidert werden. Diese 

Herausforderung unterstreicht die Rolle der raumzeitlichen Optik als treibende Teildisziplin der 

Photonik. Es gilt Methoden aus verschiedenen Teilgebieten der Optik, wie der räumlichen Optik, 

der Optik ultrakurzer Pulse und der nichtlinearen Optik zu vereinen. 

In Bezug auf die Erzeugung und Formung raumzeitlicher Lichtpulse konnten in dieser Arbeit die 

zeitliche und räumliche Manipulation von Lichtfeldern demonstriert werden, ausgehend von 

Kurzpulslasern und Verstärkern, sowie optisch-parametrischen Verstärkern. Es wurde ein 

spektraler Pulsformungsaufbau für Laserpulse mit mehreren zehn Gigawatt Spitzenleistung 

implementiert und im Hinblick auf geringe optische Aberrationen hin optimiert. Dabei konnten 

die Parameter kommerziell erhältlicher Systeme in Bezug auf Transmissionseffizienz, 

Leistungsverträglichkeit und Abbildungsqualität deutlich verbessert werden.  

Die räumliche Formung ultrakurzer Pulse wurde benutzt, um einen Puls mit optischem 

Drehimpuls (orbital angular momentum) und diskret azimutaler Struktur zu erzeugen. Zu diesem 

Zweck wurde die etablierte Spiralphasenplattentechnik modifiziert, d.h. der Puls propagiert 

durch ein transparentes Medium mit stufenweise, spiralförmig anwachsender Dicke. Die 

Intensität der Fernfeldverteilung hat die gleiche Anzahl diskreter Peaks, wie die Phasenplatte 

Stufen hat. Diese Technik ist geeignet optische Wirbelfelder in diskreten Strukturen anzuregen. 

Ausblickend wurde das Potential von Metamaterialoberflächen zur raumzeitlichen Pulsformung 

eruiert, da es zurzeit noch keine tragfähigen Konzepte zur statischen oder rekonfigurierbaren 

Formung beliebiger, raumzeitlicher Pulse gibt. Das Konzept basiert auf einem holographischen 

Element, welches für jede Frequenzkomponente des Pulses ein anderes, beliebig einstellbares 

Hologramm produziert. Die notwendige Dispersion und Designfreiheit der spektralen Antwort 
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jedes einzelnen Pixels soll erreicht werden, in dem jedes Pixel aus einem oder mehreren 

resonanten Nanostrukturen besteht, deren kumulative Antwort auf ein Anregungsfeld frei designt 

werden kann. Das Vorhaben fußt auf einer Untersuchung zu mehrfarbigen 

Metamaterialhologrammen. Die Erweiterung auf ein durchgehendes Spektrum ist konzeptionell 

klar, in der technischen Umsetzung jedoch an fundamentale Limits verfügbarer Materialien und 

Strukturierungstechniken gebunden.  

Die hier implementierten und entwickelten, raumzeitlichen Analysetechniken basieren auf der 

räumlichen Parallelisierung von Pulscharakterisierungverfahren. Es wurden drei raumzeitliche 

Analysetechniken eingesetzt. Zuerst wurde ein abbildender Kreuzkorrelator als „Arbeitspferd“ 

aufgebaut. Dabei propagiert der zu charakterisierende Signalpuls mit einem bekannten 

Referenzpuls durch einen nichtlinearen Kristall. Signal- und Referenzpuls sind über eine 

Verzögerungsstrecke in der Ankunftszeit variabel. Im entsprechend angepassten nichtlinearen 

Kristall entsteht Summenfrequenzlicht. Wird dieses Summenfrequenzlicht auf eine Kamera 

abgebildet und die Verzögerungsstrecke „durchgefahren“ kann eine raumzeitliche 

Intensitätsverteilung des Signals rekonstruiert werden. Die zeitliche Auflösung wird dabei von 

der Dauer des Referenzpulses bestimmt und konnte im Laufe der Arbeit von mehr als 70 fs auf 

30 fs reduziert werden. 

Zur Analyse kürzerer Ereignisse wurde der Kreuzkorrelator zum abbildenden Kreuzkorrelations-

FROG (ImXFROG) ausgebaut. Dazu wurde ein einstellbares Fabry-Perot-Interferometer 

entwickelt, das lediglich eine bestimmte Frequenzkomponente des Summenfrequenzlichtes 

transmittiert. Der Aufbau erreicht eine zeitliche Auflösung von 9 fs bei einem Messfeld von 

900 fs und 300 × 300 Pixeln räumlicher Auflösung. Er ist in der Lage Intensität und Phase des 

Pulses auf 107 Voxeln unabhängig voneinander zu rekonstruierten. Damit wurde die Anzahl 

unabhängiger Voxel für diese Klasse von Analysetechnik um zwei Größenordnungen gesteigert. 

Als Alternative zu ImXFROG wurde ein eindimensionaler Kreuzkorrelations-FROG (OXFROG) 

entwickelt, der die Abbildung entlang einer Achse „opfert“, um entlang dieser die Wellenlänge 

zu bestimmen. Der Aufbau benötigt kein aktiv stabilisiertes Interferometer, sondern wird mit 

einem Gitter betrieben. OXFROG erreicht die zeitliche Auflösung von ImXFROG bei einer 

Messdauer von wenigen Sekunden. OXFROG soll bei der raumzeitlichen Charakterisierung der 

Pulspropagation in eindimensionalen Wellenleiterarrays eingesetzt werden. 

In einem weiteren Teilprojekt dieser Arbeit wurde das Potential flexibler Pulsformungstechniken 

erforscht, um die Unterteilung zwischen Pulsformung und Pulsanalyse aufzubrechen. Damit 

werden experimentelle Aufbaue in der linearen Optik vereinfacht. Das Konzept basiert auf der 
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Austauschbarkeit der linear-optischen Bauteile und stellt deren kumulative Wirkung mittels eines 

raumzeitlichen Pulsshapers dar. Der spektrale Pulsformer wurde benutzt, um zeitliche 

Bauelemente darzustellen, so z.B. ein Michelson-Interferometer und einen Pulskompressor. 

Damit konnten Pulse raumzeitlich analysiert werden, ohne einen entsprechenden physischen 

Aufbau zu realisieren. 

Kern der Arbeit und Anlass für die Methodenentwicklung war die Beobachtung und 

Charakterisierung diskreter Light Bullets (LBs). Die Vorhersage ihrer Beobachtbarkeit erfolgte 

bereits Mitte der Neunziger Jahre des vergangenen Jahrhunderts. Die spezifischen Eigenschaften 

hexagonaler Faserarrays sind hervorragend geeignet, um LBs zu beobachten. Die Dispersion bei 

relevanten Wellenlängen ist jedoch gering. Deshalb haben LBs typische Dauern von wenigen 

zehn Femtosekunden und eine kritische Überprüfung der etablierten, numerischen Modelle war 

nötig. Modelle, die auf der nichtlinearen Schrödingergleichung basieren, beschreiben die 

Propagation solcher Pulse ungenau, dienten aber der Vorhersage der Existenz und Stabilität 

diskreter LBs. Die bekannten Lösungen wurden deshalb mit einem erweiterten Modell evaluiert, 

das die Vorwärts-Maxwell-Gleichungen löst und die Evolution des reellen Feldes quantitativ 

beschreibt. 

Damit wurden entscheidende Grundlagen für die Beobachtung diskreter LBs gelegt. Diese 

gelang durch Korrelations- und ImXRFOG-Experimente sowie durch rigorose Simulationen. 

Anregungen hinreichender Leistung kontrahieren zu LBs und dispersiven Wellen. Die direkte 

Messung ihrer Zeitdauer und Dispersionsfreiheit gelang mit dem ImXFROG. 

LBs werden durch den Raman-Effekt zu längeren Wellenlängen verschoben und propagieren 

langsamer als die dispersiven Wellen. LBs sind deshalb von dispersiven Wellen raumzeitlich 

getrennt. Die Rotverschiebung begrenzt die Lebensdauer der LBs. Dies ist ein inhärent 

hochdimensionaler Effekt, da solitäre Wellen hoher Dimension eine Minimalenergie haben, die 

proportional zur Stärke der diskreten Beugung ist, die mit der Wellenlänge anwächst. Sobald die 

LBs über eine gewisse Grenzwellenlänge rotverschoben wird zerfällt sie deshalb. Wir konnten 

nachweisen, dass diskrete LBs über mehr als 10 Dispersionslängen stationär sind. 

Dieser selbstinduzierte Zerfall ist das Ergebnis der zeitlichen Asymmetrie der nichtlinearen 

Antwort des Materials. Eine weitere intrinsische Asymmetrie, ist die Wellenlängenabhänigkeit 

der diskreten Beugung, also der direkten Kopplung von räumlichen und zeitlichen Effekten. Dies 

manifestiert sich in raumzeitlicher Asymmetrie des Spektrums der LBs. Experimentell wurde 

nachgewiesen, dass LBs einer raumzeitlich symmetrischen Anregung das vorhergesagte Maß an 

Asymmetrie aufprägen. Dies führt zum experimentell messbaren, superluminalen Zerfall der 

LBs. Ähnliche Effekte in homogenen Medien sind experimentell unzugänglicher.  



  

 99 of 99 

Im letzten Teil der Arbeit wurde der Einfluss asymmetrischer Anregungen untersucht. Es wurden 

Vortex Light Bullets (VLBs), also LBs mit einer azimutalen Phasenschraube mittels der 

Phasenplattentechnik angeregt. Es konnte gezeigt werden, dass VLBs gegen experimentell 

auftretende Störungen für ca. die Hälfte der stationären Länge der einfachen LBs stationär sein 

können. Instabile, niederenergetische VLBs zerfallen in ein einfaches LB und dispersive Wellen. 

Hochenergetische, teilstabile VLBs propagieren stationär und desynchronisieren. Der 

experimentelle Nachweis erfolgt, in dem man die zeitliche und energetische Synchronizität der 

Pulse in den drei zentralen Wellenleitern untersucht. Im relevanten Energiebereich lässt sich 

diese beobachten, VLBs propagieren hier.  

Im Rahmen dieser Arbeit ist es gelungen diskrete LBs in einem experimentellen System 

nachzuweisen und damit deren theoretische Vorhersage nachprüfen. Darüber hinaus kann man 

hier schlaglichtartig den Wert experimenteller Physik ablesen. Im Gegensatz zu den stark 

vereinfachten und idealisierten Lösungen, mittels derer die Stabilität diskreter LBs vorhergesagt 

wurde, konnte gezeigt werden das tatsächliche LBs eine deutlich komplexere Dynamik 

aufweisen. Es konnten neuartige Effekte der nichtlinearen, raumzeitlichen Wellenausbreitung 

dargestellt werden. Dieses Feld ist beliebig erweiterbar; komplexe, raumzeitliche 

Interaktionsszenarien von LBs können untersucht werden, genauso wie die Interaktion von LBs 

mit geometrischen Störungen. 

Die Verbesserung und Neuentwicklung von Methoden zur Erzeugung, Messung und 

Modellierung von raumzeitlichen Pulsen sind in keiner Weise nur auf diskrete LBs beschränkt, 

sondern werden in der raumzeitlichen Photonik ihren Platz finden. 

Abschließend sei ein weiterer wichtiger Aspekt der Untersuchung nichtlinearer, raumzeitlicher 

Prozesse genannt. Wie einleitend beschrieben ist die experimentelle, nichtlineare Optik 

unverzichtbarer Impulsgeber für das Verständnis nichtlinearer Wellenphänomene. Viele dieser 

Prozesse sind intrinsisch hochdimensional. Deshalb ist davon auszugehen, dass die hier 

gezeigten Ergebnisse das Verständnis hochdimensionaler Wellenphänomene im Allgemeinen 

fördern werden. 
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Appendix F: Symbols 
𝑎�𝑛𝑚 stationary solution of normalized 

NLSE 

𝐴(0) pulse peak amplitude 

𝐴0 WA characteristic amplitude 

𝐴eff effective mode area of waveguide 

𝐴𝑛𝑚 amplitude of waveguide mode in 
waveguide 𝑛𝑛 

𝑎𝑛𝑚 normalized amplitude of waveguide 
mode in waveguide 𝑛𝑛 

𝛼1 normalized STC coefficient 

𝐴 filter describing a pulse analysis 
device 

𝑖crit smallest nonlinear phase shift for 
semistable VLBs 

𝑖min smallest nonlinear phase shift for 
particular LB family 

𝑖thresh nonlinear phase shift at 𝐸thresh 

𝛽𝑖 𝑖𝑡ℎ taylor coefficient of 𝛽 at carrier 
frequency 𝜔0 

𝐵 filter describing the ST experiment 

𝑖 normalized nonlinear phase shift 

𝛽 longitudinal wavenumber of isolated 
waveguide 

𝐶𝑛𝑚𝑛′𝑚′ coupling matrix, modeling particular 
WA geometry 

𝑐(𝑖) waveguide coupling coefficients 

𝑐ph vacuum speed of light 

𝑐𝑖 𝑖𝑡ℎ Taylor coefficient of coupling 
constant c 

𝐶 2nd order chirp 

𝑐 singular waveguide coupling 
coefficient 

ΔSF spectral asymmetry measure 

𝐷𝑛𝑚 entries for hessian matrix of 
dispersion relation 

DoF𝑋 independently measurable 
quantitates along transverse 
coordinate 𝑋 

Δ𝑇sim mean time of arrival difference for 
simulations with or without STC 

Δ𝑇 mean time of arrival difference 
between central waveguide pulse 
and pulses in all other waveguides 

Δ𝑘 transverse (i.e., angular) 
wavenumber range 

Δ𝑛 refractive index shift 

Δ𝑡 duration of a window over which a 
signal is defined 

Δ𝛽 longitudinal wavenumber shift of 
the Bloch mode 

Δ𝜆 spectral measurement windows or 
free spectral range 

Δ𝜔 angular frequency bandwidth 

𝐷 Diameter 

𝛿 step height 

𝛿𝑘 transverse (i.e., angular) 
wavenumber resolution 

𝛿𝑡 temporal resolution 

𝛿𝑧 propagation step size 

𝛿𝜆 spectral resolution 

𝛿𝜔 angular frequency resolution 

𝐸(0) input pulse amplitude 

𝐸0 WA characteristic pulse energy 

𝐸out output pulse amplitude 

𝐸thresh minimum energy for particular LB 
family 

𝐸𝑛𝑚 real amplitude of mode in 
waveguide 𝑛𝑛 

𝐸 pulse energy 

𝑟 fiber array core scaling factor 

𝑟 deviation of solution from initial 
state 

Φ𝑖
(A/B) phase shift applied on the 𝑖𝑡ℎ pixel 

of display A/B of SLM 

𝐹∗ filter finesse 

ℱ field of waveguide mode 

𝐹 an arbitrary ST linear filter 

𝑓 focal length 

𝜙 the phase of a pulse, i.e., 𝜙 =
arg (𝐸) 

𝑔 relative strength of non-
instantaneous nonlinear response 

𝛾 nonlinear coefficient of waveguide 

ℎ Non-instantaneous nonlinear 
response function 

𝑘𝑥/𝑦 transverse wavenumbers in 
homogeneous media 

𝑘 wavenumber in homogeneous media 

〈𝐿Diff〉 average diffraction length 

〈𝐿Disp〉 average dispersion length 

𝐿Diff diffraction length 

𝐿Disp
(𝑁)  dispersion length of order 𝑁, if 𝑁 

omitted then 𝑁 = 2  

𝐿LB/VLB LB / VLB propagation length 

𝐿NL nonlinear length 

𝐿Raman Raman and higher order 
nonlinearity length 

𝜆0 carrier wave vacuum wavelength 

𝜆𝐶 local carrier wavelength of LB 

ℒ linear part of propagation equation 

Λ fiber array pitch (i.e., cell to cell 
distance) 

𝐿 sample length 

𝜆 vacuum wavelength 

𝜋 topological charge of a field 

𝜇, 𝜈 transverse Bloch momenta 
normalized to inverse array pitch 

𝑛2 material nonlinear refractive index 

NN number of nearest neighbors per unit 

𝑛 refractive index 

𝒩 nonlinear part of propagation 
equation 

𝑃(0) input pulse peak power 

𝑃0 WA characteristic power 

𝑃𝑛𝑚NL nonlinear polarization in waveguide 
𝑛𝑛 

𝑛𝑛 waveguide index 

𝑟 fiber core radius 

𝑆 filter describing a pulse shaping 
device 

〈𝑇𝐶〉 temporal center of gravity of the 
central waveguide 

〈𝑇𝑂〉 temporal center of gravity of all 
other waveguides 

〈𝑇〉 pulse center of gravity time, integral 
of  luminality 

𝑡(0) pulse FWHM duration 

𝑡0 WA characteristic time 

𝜏1, 𝜏2 characteristic time scales of the SRS 

𝑡 temporal transverse coordinate (in a 
co-propagating frame of reference) 
or measure of delay 

𝜏 normalized time coordinate, in co-
propagating frame of reference 

𝑈𝑖
(A/B) voltage applied on the 𝑖th  pixel on 

display A/B of SLM 

𝑣𝑔
(0) group velocity of isolated 

waveguide mode 

𝑣𝑔 group velocity 

𝜔0 carrier wave angular frequency  

𝑤 beam FWHM diameter 

𝜔 angular frequency, mostly as an 
offset to 𝜔0 

𝑥,y  spatial transverse coordinates 

𝑟 fiber array overall scaling factor 

𝑧0 WA characteristic length 

𝑧 propagation coordinate 

𝜁 normalized propagation coordinate 



 

 

Appendix G: Abbreviations 
1D ........................................................................................ one-dimensional 
2D ....................................................................................... two-dimensional 
3R ...................................................... Re-amplify, Re-time, and Re-generate 
AbC ............................................................................... Analysis-by-Control 
BBO ............................................................................... Beta-Barium-Borate 
CCD ......................................................................... Coupled Charge Device 
CPA ......................................................................... Chirped Pulse Amplifier  
DFG .......................................................... Difference Frequency Generation 
DO ............................................................................. Discrete Optical/Optics 
DR .................................................................................. Dispersion Relation 
DSC .................................................................. Direct Space-Time Coupling 
FA ................................................................................................. Fiber Array 
FPI ....................................................................... Fabry-Pérot Interferometer 
FROG .................................................... Frequency Resolved Optical Gating 
FSR ................................................................................ Free Spectral Range 
FWHM ......................................... Full Width at Half Maximum of intensity 
GPU ........................................................................ Graphic Processing Unit 
IAP ..................................................................... Institute of Applied Physics 
ImXFROG ................................................ Imaging Cross-correlating FROG 
iXCorr ................................................................... Imaging Cross-Correlator 
LB ............................................................................................... Light Bullet 
MIIPS ................................. Multiphoton Intrapulse Interference Phase Scan 
NA .................................................................................. Numerical Aperture 
OAM ..................................................................Orbital Angular Momentum 
OL ........................................................................................Optical Limiting 
OPA .................................................................. Optical Parametric Amplifier 
OXFROG ............... fast One dimensional imaging Cross-correlating FROG 
PC ........................................................................................Photonic Crystal 
PCF ............................................................................ Photonic Crystal Fiber 
SF .......................................................................................... Sum Frequency 
SLM ....................................................................... Spectral Light Modulator 
SPM ........................................................................... Self Phase Modulation 
SPS .............................................................................. Spectral Pulse Shaper 
SRS ................................................................. Stimulated Raman Scattering 
ST .......................................................................................... SpatioTemporal 
STC ............................................................................. Space-Time Coupling 
SVEA ........................................... Slowly Varying Envelope Approximation 
SWA ................................................................. Segmented Waveguide Array 
Ti:Sa .................................................................................. Titanium Sapphire 
TOC .................................................................................. Third Order Chirp 
UME ....................................................... Unidirectional Maxwell Equations 
VLB ................................................................................ Vortex Light Bullet 
WA ..................................................................................... Waveguide Array 
WG ...............................................................................................WaveGuide 
XFROG ................................................................... Cross-correlating FROG 
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