Imaging and Aberration Theory

Lecture 5: Aberrations representations
2018-11-15
Herbert Gross
<table>
<thead>
<tr>
<th>No.</th>
<th>Date</th>
<th>Topic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>18.10.</td>
<td>Paraxial imaging</td>
<td>paraxial optics, fundamental laws of geometrical imaging, compound systems</td>
</tr>
<tr>
<td>2</td>
<td>25.10.</td>
<td>Pupils, Fourier optics, Hamiltonian coordinates</td>
<td>pupil definition, basic Fourier relationship, phase space, analogy optics and mechanics, Hamiltonian coordinates</td>
</tr>
<tr>
<td>3</td>
<td>01.11.</td>
<td>Eikonal</td>
<td>Fermat principle, stationary phase, Eikonals, relation rays-waves, geometrical approximation, inhomogeneous media</td>
</tr>
<tr>
<td>4</td>
<td>08.11.</td>
<td>Aberration expansions</td>
<td>single surface, general Taylor expansion, representations, various orders, stop shift formulas</td>
</tr>
<tr>
<td>5</td>
<td>15.11.</td>
<td>Representation of aberrations</td>
<td>different types of representations, fields of application, limitations and pitfalls, measurement of aberrations</td>
</tr>
<tr>
<td>6</td>
<td>22.11.</td>
<td>Spherical aberration</td>
<td>phenomenology, sph-free surfaces, skew spherical, correction of sph, aspherical surfaces, higher orders</td>
</tr>
<tr>
<td>7</td>
<td>29.11.</td>
<td>Distortion and coma</td>
<td>phenomenology, relation to sine condition, aplanatic sytems, effect of stop position, various topics, correction options</td>
</tr>
<tr>
<td>8</td>
<td>06.12.</td>
<td>Astigmatism and curvature</td>
<td>phenomenology, Coddington equations, Petzval law, correction options</td>
</tr>
<tr>
<td>9</td>
<td>13.12.</td>
<td>Chromatical aberrations</td>
<td>Dispersion, axial chromatical aberration, transverse chromatical aberration, spherochromatism, secondary spectrum</td>
</tr>
<tr>
<td>10</td>
<td>20.12.</td>
<td>Sine condition, aplanatism and isoplanatism</td>
<td>Sine condition, isoplanatism, relation to coma and shift invariance, pupil aberrations, Herschel condition, relation to Fourier optics</td>
</tr>
<tr>
<td>11</td>
<td>10.01.</td>
<td>Wave aberrations</td>
<td>definition, various expansion forms, propagation of wave aberrations</td>
</tr>
<tr>
<td>12</td>
<td>17.01.</td>
<td>Zernike polynomials</td>
<td>special expansion for circular symmetry, problems, calculation, optimal balancing, influence of normalization, measurement</td>
</tr>
<tr>
<td>13</td>
<td>24.01.</td>
<td>Point spread function</td>
<td>ideal psf, psf with aberrations, Strehl ratio</td>
</tr>
<tr>
<td>14</td>
<td>31.01.</td>
<td>Transfer function</td>
<td>transfer function, resolution and contrast</td>
</tr>
<tr>
<td>15</td>
<td>07.02.</td>
<td>Additional topics</td>
<td>Vectorial aberrations, generalized surface contributions, Aldis theorem, intrinsic and induced aberrations, reversability</td>
</tr>
</tbody>
</table>
1. Stop shift formulas
2. Lens aberration contributions
3. Pupil aberrations
4. Representation of geometrical aberrations
5. Representation of wave aberrations
6. Miscellaneous
7. Aberration measurements
Eikonal of 4th order

\[L_A^{(4)} = K \cdot \frac{(s - p)^4}{8p^4} (x^2 + y^2)^2 + S \cdot \frac{s^4}{8p^4} (x_p^2 + y_p^2)^2 + A \cdot \frac{s^2 \cdot (s - p)^2}{2p^4} (xx_p + yy_p)^2 \]

\[+ P \cdot \frac{s^2 \cdot (s - p)^2}{4p^4} (x^2 + y^2)(xx_p + yy_p) - D \cdot \frac{s \cdot (s - p)^3}{2p^4} (x^2 + y^2)(xx_p + yy_p) - C \cdot \frac{s^3 \cdot (s - p)}{2p^4} (x^2 + y^2)(xx_p + yy_p) \]

Coefficients

1. **Spherical aberration**

\[K = -\frac{(n' - n)b}{R^3} - ns \cdot \left(\frac{1}{R s} - \frac{1}{s_p^2} \right)^2 + n's' \left(\frac{1}{R s'} - \frac{1}{s_p'^2} \right)^2 \]

2. **Astigmatism**

\[S = -\frac{(n' - n)b}{R^3} - Q^2 \left(\frac{1}{ns} - \frac{1}{n's'} \right) \]

3. **Field curvature**

\[P = -\frac{(n' - n)b}{R^3} - QQ_p \cdot \left(\frac{1}{ns} - \frac{1}{n's'} \right) + Q(Q - Q_p) \cdot \left(\frac{1}{ns_p} - \frac{1}{n's_p'} \right) \]

4. **Distortion**

\[D = -\frac{(n' - n)b}{R^3} - Q_p^2 \cdot \left(\frac{1}{ns} - \frac{1}{n's'} \right) + Q_p(Q - Q_p) \cdot \left(\frac{1}{ns_p} - \frac{1}{n's_p'} \right) \]

5. **Coma**

\[C = -\frac{(n' - n)b}{R^3} - QQ_p \cdot \left(\frac{1}{ns} - \frac{1}{n's'} \right) \]
Stop Shift Formulas

- If the stop is moved, the chief ray takes a modified way through the system.
- Approach: expansion of the surface coefficient formulas for small changes in the pupil position p, p'.
- The stop shift formulas shows the change of the Seidel coefficients due to this effect.
- Also possible:
 - set of formulas for object or image shift
 - applicable for curved objects
Stop Shift Formulas

- Stop shift formulas explicate with the help of the moving parameter

\[\delta E = \frac{\bar{h}_{\text{new}} - \bar{h}_{\text{old}}}{h} \]

sph \[S_I^* = S_I \]

coma \[S_{II}^* = S_{II} + \delta E \cdot S_I \]

ast \[S_{III}^* = S_{III} + \delta E \cdot S_{II} + \delta E^2 \cdot S_I \]

curv \[S_{IV}^* = S_{IV} \]

dist \[S_V^* = S_V + \delta E \cdot (3S_{III} + S_{IV}) + 3\delta E^2 \cdot S_{II} + \delta E^3 \cdot S_I \]

- Mix of aberration types due to stop shift: induced aberrations
Examples:
1. spherical aberration induces coma
2. coma induces astigmatism
Lens Contributions of Seidel

- In 3rd order (Seidel):
 Additive contributions of thin lenses (equal ω) to the total aberration value (stop at lens position)

- Spherical aberration
 X: lens bending
 M: position parameter

- Coma

- Astigmatism

- Field curvature

- Distortion
 $D_{\text{lens}} = 0$
Lens Contributions of Seidel

- Spherical aberration

\[S_{\text{lens}} = \frac{1}{32n(n-1)f^3} \left[\frac{n^3}{n-1} + \frac{n+2}{n-1} \cdot \left(X - \frac{2(n^2-1)}{n+2} \cdot M \right)^2 - \frac{n^2(n-1)}{n+2} \cdot M^2 \right] \]

- Special impact on correction:
 1. Special quadratic dependence on bending \(X \)
 Minimum at
 \[X_{\text{sph min}} = -\frac{2(n^2-1)}{n+2} \cdot M \]
 2. No correction for small \(n \) and \(M \)
 3. Correction for large
 \(n \): infrared materials
 \(M \): virtual imaging
 Limiting value
 \[M_{s=0}^2 = \frac{n(n+2)}{(n-1)^2} \]
Photographic lens

- Incidence angles for chief and marginal ray
- Field dominant system
- Quasi symmetry can be seen at the surface contributions of field aberrations
- Symmetry disturbed for spherical aberration

![Photographic lens diagram]

![Graphs of aberrations]
Microscopic Objective Lens

- Incidence angles for chief and marginal ray
- Aperture dominant system
Microscopic Lens

- Large distance system
- Problems with large diameters
- Aplanatic front group
- Not corrected for curvature and distortion
- Astigmatic contributions of cemented surfaces corrected by rear group
- Sign of lateral chromatic aberration in front group
Lithographic Lens

- Large effect of mirror on field curvature

- Typical bulge structure shows the correction of field curvature according to the Petzval theorem
Primary Aberration Spot Shapes

- Simplified set of Seidel formulas:
 field point only in y' considered

 \[
 \Delta y' = S' \cdot r_{p}^{3} \cos \varphi_{p} + C' \cdot y' \cdot r_{p}^{2} (2 + \cos 2\varphi_{p}) + (2A' + P') \cdot y'^{2} \cdot r'_{p} \cos \varphi_{p} + D' \cdot y'^{3}
 \]

 \[
 \Delta x' = S' \cdot r_{p}^{3} \sin \varphi_{p} + C' \cdot y' \cdot r_{p}^{2} \sin 2\varphi_{p} + P' \cdot y'^{2} \cdot r'_{p} \sin \varphi_{p}
 \]

- Spherical aberration S:
 circle

 \[
 \Delta y' = S' \cdot r_{p}^{3} \cos \varphi_{p} , \quad \Delta x' = S' \cdot r_{p}^{3} \sin \varphi_{p}
 \]

 \[
 \Delta x'^{2} + \Delta y'^{2} = S'^{2} \cdot r_{p}^{6}
 \]

- Coma:
 shifted circle

 \[
 \Delta y' = C' \cdot y' \cdot r_{p}^{2} (2 + \cos 2\varphi_{p}) , \quad \Delta x' = C' \cdot y' \cdot r_{p}^{2} \sin 2\varphi_{p}
 \]

 \[
 \Delta x'^{2} + (\Delta y' - 2C' \cdot y' \cdot r_{p}^{2})^{2} = C'^{2} \cdot y'^{2} \cdot r_{p}^{4}
 \]

- Astigmatism:
 focal line

 \[
 \Delta y' = 2A' \cdot y'^{2} \cdot r'_{p} \cos \varphi_{p} , \quad \Delta x' = 0
 \]

- Field curvature:
 circle

 \[
 \Delta y' = P' \cdot y'^{2} \cdot r'_{p} \cos \varphi_{p} , \quad \Delta x' = P' \cdot y'^{2} \cdot r'_{p} \sin \varphi_{p}
 \]

 \[
 \Delta x'^{2} + \Delta y'^{2} = P'^{2} \cdot y'^{4} \cdot r_{p}^{2}
 \]

- Distortion:
 shifted point

 \[
 \Delta y' = D' \cdot y'^{3} , \quad \Delta x' = 0
 \]
Primary Aberration Spot Shapes

- Schematically:

1) spherical aberration
2) coma
3) astigmatism
4) field curvature
5) distortion
Optical Image Formation

- **Perfect optical image:**
 All rays coming from one object point intersect in one image point
- **Real system with aberrations:**
 1. transverse aberrations in the image plane
 2. longitudinal aberrations from the image plane
 3. wave aberrations in the exit pupil
Representation of Geometrical Aberrations

- **Longitudinal aberrations** Δs

- **Transverse aberrations** Δy

![Diagram showing longitudinal and transverse aberrations](image)
Representation of Geometrical Aberrations

- **Angle aberrations Δu**

- **Wave aberrations ΔW**

\[
\Delta s' = \frac{R}{y_p} \cdot \Delta y' = \frac{\Delta y'}{\sin u'} = -\frac{R^2}{y_p} \cdot \frac{\partial W(x_p, y_p)}{\partial y_p}
\]
Angle Aberrations

- Angle aberrations for a ray bundle: deviation of every ray from common direction of the collimated ray bundle
- Representation as a conventional spot diagram
- Quantitative spreading of the collimated bundle in mrad / °
Aperture Dependence of Longitudinal Aberration

- Typical representation:
 Longitudinal aberration as function of aperture (pupil coordinate)

- If correction at the edge: maximum residuum at the zone $1/\sqrt{2}$

- Typical: largest gradients at the edge

- Correcting aspheres or high NA of higher order:
 oscillatory behavior
Longitudinal Aberration Chart

- Spherical aberration
 - 4 colors
- Coma in zone
 - 4 colors
- Coma in full field
 - 4 colors
- Image shells/astigmatism
 - 4 colors
- Distortion
 - Main color
- Chromatic difference in magnification
- Secondary chromatic spherical aberration

Graphs showing various aberrations and their respective magnitudes and effects.
Pupil Sampling

- Ray plots
- Spot diagrams

![Diagram showing ray plots, spot diagrams, and pupil sampling](image-url)
Ray Selection Planes

- Tangential / sagittal / skew rays
- View along optical axis
Transverse Aberrations

- Typical low order polynomial contributions for: defocus, coma, spherical aberration, lateral color
- This allows a quick classification of real curves

\[\Delta y' = K' \cdot r'_p \cos \varphi_p \]

\[\Delta y' = S' \cdot r'^3_p \cos \varphi_p \]

\[\Delta y' = C' \cdot y'_p \cdot r'^2_p \cdot (2 + \cos 2\varphi_p) \]
Interpretation of Transverse Aberrations

- Combinations of basic shapes

![Graphs showing combinations of basic shapes like spherical, defocus, coma, distortion, and their interactions.](Image)
Transverse Aberrations

- Classical aberration curves
- Strong relation to spot diagram
- Usually only linear sampling along the x-, y-axis
 - no information in the quadrant of the aperture

\[\Delta y = \Delta x \]

\[l = 486 \text{ nm} \]

\[l = 588 \text{ nm} \]

\[l = 656 \text{ nm} \]

\[\lambda = 486 \text{ nm} \]

\[\lambda = 588 \text{ nm} \]

\[\lambda = 656 \text{ nm} \]
Best Image plane

- **Best resolution:**
 - bright central peak in spot
 - tangent at transverse aberration curve

- **Best contrast:**
 - mean straight line over complete pupil of transverse aberration curve
 - smallest maximal deviation

- Different criteria give slightly different best image planes

\[
\frac{\partial W_{rms}}{\partial \Delta z} = 0 \quad \frac{\partial D_s}{\partial \Delta z} = 0
\]
Transverse Aberrations

- Characteristic chart for the representation of transverse aberrations

![Graphs showing transverse aberrations](image)

wavelengths:
365 nm
480 nm
546 nm
644 nm
Pupil Aberration

- Characteristic chart for the representation of pupil aberration
- Distortion of the pupil grid from the entrance to the exit pupil
- Pupil aberration can be interpreted as the spherical aberration of the chief ray for the pupil imaging
Sine Condition

- Sine condition not fulfilled:
 - nonlinear scaling from entrance to exit pupil
 - spatial filtering on warped grid, nonlinear sampling of spatial frequencies
 - pupil size changes
 - apodization due to distortion
 - wave aberration could be calculated wrong
 - quantitative measure of offence against the sine condition (OSC):
 distortion of exit pupil grid

\[
D_p = \frac{x_{ap}}{f \cdot n \cdot \sin u} - 1
\]
- Photometric effect of pupil distortion: illumination changes at pupil boundary
- Effect induces apodization
- Sign of distortion determines the effect: outer zone of pupil brighter / darker
- Additional effect: absolute diameter of pupil changes

OSC and Apodization

![Graph showing intensity vs. rp with different pupil diameters and focus positions: -50 μm, -20 μm, focused, +20 μm, +50 μm. The graph includes labels for barrel and pincushion distortion.]
Variation of Chromatical Aberrations

- Representation of the image location as a function of the wavelength: axial chromatical shift
- Representation of the chromatical magnification difference with field height: lateral chromatical aberration
Spot Diagram

- All rays start in one point in the object plane
- The entrance pupil is sampled equidistant
- In the exit pupil, the transferred grid may be distorted
- In the image plane a spreaded spot diagram is generated
- Variation of field and color
- Scaling of size:
 1. Airy diameter (small circle)
 2. 2nd moment circle (larger circle, scales with wavelength)
 3. surrounding rectangle

<table>
<thead>
<tr>
<th>Color</th>
<th>Diagram</th>
</tr>
</thead>
<tbody>
<tr>
<td>486 nm</td>
<td></td>
</tr>
<tr>
<td>546 nm</td>
<td></td>
</tr>
<tr>
<td>656 nm</td>
<td></td>
</tr>
</tbody>
</table>
Gaussian Moment of Spot

- Spot pattern with transverse aberrations Δx_j and Δy_j
 1. centroid
 \[
 \langle \Delta x_S \rangle = \frac{1}{N} \sum_j \Delta x_j \quad \langle \Delta y_S \rangle = \frac{1}{N} \sum_j \Delta y_j
 \]
 2. 2nd order moment
 \[
 M_G = \langle \Delta r^2 \rangle = \frac{1}{N} \sum_j \left[\left(\Delta x_j - \langle \Delta x_S \rangle \right)^2 + \left(\Delta y_j - \langle \Delta y_S \rangle \right)^2 \right]
 \]
 3. diameter
 \[
 D = 2 \cdot \sqrt{M_G}
 \]

- Generalized:
 Rays with weighting factor g_j:
 corresponds to apodization
 \[
 M_G = \langle \Delta r^2 \rangle = \frac{1}{N_G} \sum \left[g_j \left(\Delta x_j - \langle \Delta x_S \rangle \right)^2 + \left(\Delta y_j - \langle \Delta y_S \rangle \right)^2 \right]
 \]

- Worst case estimation:
 size of surrounding rectangle $D_x = 2\Delta x_{\text{max}}, D_y = 2\Delta y_{\text{max}}$
Practical problem in analysis of classical spot diagrams: relation between deviations and pupil location is lost

Idea of Kingslake: transverse aberrations of spot points drawn in pupil intersection points

Δx and Δy at every surface in the pupil sampling grid

Δr at all surfaces in the pupil sampling grid

Problems:
1. proper representation of quite different scales
2. distorted grid in case of induced aberrations

- Extension of Kingslakes representation for surface contributions

- Problem: compaction of high complexity, limited clearness
Aberrations of a Single Lens

- Single plane-convex lens,
 BK7, \(f = 100 \text{ mm}, \lambda = 500 \text{ nm} \)
- Spot as a function of field position
- Coma shape rotates according to circular symmetry
- Decrease of performance with the distance to the axis

- Example HMD without symmetry
Caustic of Spherical Aberration and Coma

- **negativ spherical aberration**
 - intrafocal: compact broadened spot with bright edge
 - extrafocal: ring structure

- **positiv spherical aberration**
 - intrafocal: ring structure with bright center
 - extrafocal: ring structure with bright outer ring

- **coma**
 - bending of caustic
 - shifted center of gravity

Ref: W. Singer
Definition of the peak valley value
Wave Aberrations

- Classification of wave aberrations for one image point: Zernike polynomials

- Mean root square of wave front error

\[W_{rms} = \sqrt{\langle W^2 \rangle - \langle W \rangle^2} = \frac{1}{A_{Exp}} \iint [W(x_p, y_p) - W_{mean}(x_p, y_p)]^2 \, dx_p \, dy_p \]

- Normalization: size of pupil area

\[A_{Exp} = \iint \, dx \, dy \]

- Worst case / peak-valley wave front error

\[W_{pv} = \max\left[W_{\text{max}}(x_p, y_p) - W_{\text{min}}(x_p, y_p)\right] \]

- Generalized for apodized pupils (non-uniform illumination)

\[W_{rms} = \sqrt{\frac{1}{A_{Exp}^{(w)}} \iint I_{Exp}(x_p, y_p) \cdot [W(x_p, y_p) - W_{\text{mean}}^{(w)}(x_p, y_p)]^2 \, dx_p \, dy_p} \]
Primary Aberrations

- Relation:
 wave / geometrical aberration

<table>
<thead>
<tr>
<th>Type</th>
<th>Wave aberration</th>
<th>Geometrical spot</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spherical aberration</td>
<td>$W = c_1 \cdot r^4$</td>
<td>$\Delta x' \propto c_1 \cdot r^3 \sin \varphi$</td>
</tr>
<tr>
<td>Symmetry to Periodicity</td>
<td>axis constant</td>
<td>$\Delta y' \propto c_1 \cdot r^3 \cos \varphi$</td>
</tr>
<tr>
<td>Coma</td>
<td>$W = c_2 \cdot yr^3 \cos \varphi$</td>
<td>$\Delta y' \propto c_2 \cdot yr^2 \cdot (2 + \cos 2\varphi)$</td>
</tr>
<tr>
<td>Symmetry to Periodicity</td>
<td>one plane</td>
<td>$\Delta x' \propto c_2 \cdot yr^2 \sin 2\varphi$</td>
</tr>
<tr>
<td>one period</td>
<td></td>
<td>one straight line</td>
</tr>
<tr>
<td>Astigmatism</td>
<td>$W = c_3 \cdot y^2r^2 \cos^2 \varphi$</td>
<td>$\Delta x' = 0$</td>
</tr>
<tr>
<td>Symmetry to Periodicity</td>
<td>two planes</td>
<td>$\Delta y' \propto c_3 \cdot y^2r \cos \varphi$</td>
</tr>
<tr>
<td>two period</td>
<td></td>
<td>two straight lines</td>
</tr>
<tr>
<td>Field curvature (sagittal)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Symmetry to Periodicity</td>
<td>axis constant</td>
<td>$\Delta x' \propto c_4 \cdot y^2r \sin \varphi$</td>
</tr>
<tr>
<td>one plane</td>
<td></td>
<td>point 1 period</td>
</tr>
<tr>
<td>one period</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distortion</td>
<td>$W = c_5 \cdot y^3r \cos \varphi$</td>
<td>$\Delta x' = 0$</td>
</tr>
<tr>
<td>Symmetry to Periodicity</td>
<td>one plane</td>
<td>$\Delta y' \propto c_5 \cdot y^3$</td>
</tr>
<tr>
<td>one period</td>
<td></td>
<td>one straight line</td>
</tr>
</tbody>
</table>

Ref: H. Zügge
Typical Variation of Wave Aberrations

- Microscopic objective lens:
 Changes of rms value of wave aberration with wavelength

- Common practice:
 1. Diffraction limited on axis for main part of the spectrum
 2. Requirements relaxed in the outer field region
 3. Requirement relaxed at the blue edge of the spectrum

- Representation of the wave aberration with field position
Typical Variation of Wave Aberrations

- Representation of the wave aberration for defocussing at several field points
 - decrease of performance with field height
 - field curvature

- Wavefront over the pupil as surface
Typical Variation of Wave Aberrations

- Representation of the wave aberration as a function of field and wavelength for a microscopic lens.

- Analysis:
 1. diffraction limited correction near to axis for medium wavelength range
 2. no flattening
 3. blue edge more critical than red edge
Zernike Coefficients per Surface

- Contributions of the lower Zernike coefficients per surface, In logarithmic scale not additive (Fringe convention)

- Error in additivity due to numerical reasons for astigmatism
- Effect of induced aberrations and grid distortion in the range of $\lambda / 20$ in this case
TMA System

- Example system: plane symmetric TMA system nearly diffraction limited correction for a small field of view
 - M_1: off axis asphere, M_2, M_3: freeforms
- F-number 1.8, field -1° ...$+1^\circ$

<table>
<thead>
<tr>
<th>field angles x/y</th>
<th>$x = -1^\circ$</th>
<th>$x = 0^\circ$</th>
<th>$x = +1^\circ$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$y = -1^\circ$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$y = 0^\circ$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$y = +1^\circ$</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
- Surface contributions of every mirror with parabasal reference pupil rescaling neglected

- Dominating astigmatism

- Sum of wave aberration not additive, difference due to induced aberrations
- Low order Zernikes as a function of the field position

- Completly different distributions, Complete characterization gives a huge amount of detailed information.

- Also analytical solution for lower orders provided in the literature

PSD Ranges

- Typical impact of spatial frequency ranges on PSF
- Low frequencies: loss of resolution classical Zernike range
- High frequencies: Loss of contrast statistical
- Large angle scattering
- Mif spatial frequencies: complicated, often structured false light distributions
- The spatial frequency determines the effect of the wave front aberration

- Characteristic ranges, scaled on the diameter of the pupil:
 - figure error: Zernike causes resolution loss
 - midfrequency range
 - high frequency: roughness causes contrast loss
Hartmann Shack Wavefront Sensor

- Typical setup for component testing

- Lenslet array

![Diagram of the setup](image)

- Fiber illumination
- Collimator
- Beam-splitter
- Detector
- Lenslet array
- Telescope for adjustment of the diameter
- Test surface

![Images of subaperture and point spread function](image)

- Subaperture
- Point spread function

2-dimensional lenslet array
Spot Pattern of a HS - WFS

- Aberrations produce a distorted spot pattern
- Calibration of the setup for intrinsic residual errors
- Problem: correspondence of the spots to the subapertures

a) spherical aberration
b) coma
c) trefoil aberration
Hartmann Method

- Similar to Hastmann Shack Method with simple hole mask and two measuring planes
- Measurement of spot center position as geometrical transverse aberrations
- Problems: broadening by diffraction

\[s'_{y} = s'_{1} + \left(s'_{2} - s'_{1} \right) \cdot \frac{y_{1}}{y_{1} + y_{2}} \]
- Real pinhole pattern with signal
- Problems with cross talk and threshold
Testing with Twyman-Green Interferometer

- Short common path, sensible setup
- Two different operation modes for reflection or transmission
- Always factor of 2 between detected wave and component under test

1. mode:
 - lens tested in transmission
 - auxiliary mirror for auto-collimation

2. mode:
 - surface tested in reflection
 - auxiliary lens to generate convergent beam
Interferograms of Primary Aberrations

Spherical aberration 1 λ

Astigmatism 1 λ

Coma 1 λ

-1 -0.5 0 +0.5 +1
Defocussing in λ
Critical definition of the interferogram boundary and the Zernike normalization radius in reality