Design and Correction of optical Systems

Part 4: Paraxial optics

Summer term 2012
Herbert Gross
<table>
<thead>
<tr>
<th></th>
<th>Overview</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Basics</td>
<td>2012-04-18</td>
</tr>
<tr>
<td>2</td>
<td>Materials</td>
<td>2012-04-25</td>
</tr>
<tr>
<td>3</td>
<td>Components</td>
<td>2012-05-02</td>
</tr>
<tr>
<td>4</td>
<td>Paraxial optics</td>
<td>2012-05-09</td>
</tr>
<tr>
<td>5</td>
<td>Properties of optical systems</td>
<td>2012-05-16</td>
</tr>
<tr>
<td>6</td>
<td>Photometry</td>
<td>2012-05-23</td>
</tr>
<tr>
<td>7</td>
<td>Geometrical aberrations</td>
<td>2012-05-30</td>
</tr>
<tr>
<td>8</td>
<td>Wave optical aberrations</td>
<td>2012-06-06</td>
</tr>
<tr>
<td>9</td>
<td>Fourier optical image formation</td>
<td>2012-06-13</td>
</tr>
<tr>
<td>10</td>
<td>Performance criteria 1</td>
<td>2012-06-20</td>
</tr>
<tr>
<td>11</td>
<td>Performance criteria 2</td>
<td>2012-06-27</td>
</tr>
<tr>
<td>12</td>
<td>Measurement of system quality</td>
<td>2012-07-04</td>
</tr>
<tr>
<td>13</td>
<td>Correction of aberrations 1</td>
<td>2012-07-11</td>
</tr>
<tr>
<td>14</td>
<td>Optical system classification</td>
<td>2012-07-18</td>
</tr>
</tbody>
</table>
4.1 Imaging - basic notations
- paraxial approximation
- linear collineation
- graphical image construction
- lens makers formula

4.2 Optical system properties - special aspects
- imaging
- multiple components

4.3 Matrix calculus - simple matrices
- relations

4.4 Phase space - basic idea
- invariant
- Optical Image formation:
 All ray emerging from one object point meet in the perfect image point

- Region near axis:
 gaussian imaging
 ideal, paraxial

- Image field size:
 Chief ray

- Aperture/size of light cone:
 marginal ray
 defined by pupil stop
- Single surface between two media
 Radius r, refractive indices n, n'

\[
\frac{n'}{s'} - \frac{n}{s} = \frac{n' - n}{r} = \frac{1}{f'}
\]

- Imaging condition, paraxial

- Abbe invariant
 alternative representation of the imaging equation

\[
Q_s = n \cdot \left(\frac{1}{r} - \frac{1}{s}\right) = n' \cdot \left(\frac{1}{r} - \frac{1}{s'}\right)
\]
- Law of refraction

\[n \cdot \sin I = n' \cdot \sin I' \]

- Expansion of the sine-function:

\[\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \ldots \]

- Linearized approximation of the law of refraction: \(I \longrightarrow i \)

\[n \cdot i = n' \cdot i' \]

- Relative error of the approximation

\[\varepsilon = \frac{i' - I'}{I'} = \frac{n \cdot i}{n'} - 1 \]

\[\arcsin \left(\frac{n \cdot \sin i}{n'} \right) \]
Linear Collineation

- **General rational transformation**

\[
x' = \frac{F_1}{F_0}, \quad y' = \frac{F_2}{F_0}, \quad z' = \frac{F_3}{F_0}
\]

- **Linear expression**

\[
F_j = a_j x + b_j y + c_j z + d_j, \quad j = 0, 1, 2, 3
\]

- **Describes linear collinear transform**

\[
x = \frac{F_1'}{F_0'}, \quad y = \frac{F_2'}{F_0'}, \quad z = \frac{F_3'}{F_0'}
\]

- **Analog in the image space**

\[
F_j' = a_j' x' + b_j' y' + c_j' z' + d_j', \quad j = 0, 1, 2, 3
\]

- **Inserted in only 2 dimensions**

\[
z' = \frac{c_3 z + d_3}{c_0 z + d_0}, \quad y' = \frac{a_1 y}{c_0 z + d_0}
\]

- **Focal lengths**

\[
f = \frac{a_1}{c_0}, \quad f' = \frac{c_3 d_0 - d_3 c_0}{a_1 c_0}
\]

- **Principal planes**

\[
z_p = \frac{a_1 - d_0}{c_0}, \quad z_p' = \frac{c_3 a_1 - c_3 d_0 + d_3 c_0}{a_1 c_0}
\]
- Special choice of origin of coordinate systems: Newton imaging equations

- Finite angles: $\tan(u)$ must be taken:
 Magnification:

 $$m = \frac{\tan u'}{\tan u}$$

 Focal length:

 $$\frac{1}{f'} = \frac{\tan u' - \tan u}{h}$$

 Invariant:

 $$ny \tan u = n' y' \tan u'$$
- Positive lens
 Real image for $s > f$

- Negative lens
 Virtual image
Graphical image construction according to Listing by 3 special rays:

1. First parallel through axis, through focal point in image space F'

2. First through focal point F, then parallel to optical axis

3. Through nodal points, leaves the lens with the same angle

Procedure work for positive and negative lenses
For negative lenses the F / F' sequence is reversed
First ray parallel to arbitrary ray through focal point, becomes parallel to optical axis

Arbitrary ray:
- constant height in principal planes $S \rightarrow S'$
- meets the first ray in the back focal plane, desired ray is $S'Q$
- Principle setups of the image of a positive lens
- Object and image can be real/virtual
- Ranges of imaging
 Location of the image for a single lens system

- Change of object location

- Image could be:
 1. real / virtual
 2. enlarged/reduced
 3. in finite/infinite distance
- Lateral magnification for finite imaging
- Scaling of image size

\[m = \frac{y'}{y} = -\frac{f \cdot \tan u}{f' \cdot \tan u'} \]
- Imaging on axis: circular / rotational symmetry
 Only spherical aberration and chromatical aberrations

- Finite field size, object point off-axis:
 - chief ray as reference
 - skew ray bundles: coma and distortion
 - Vignetting, cone of ray bundle not circular symmetric
 - to distinguish: tangential and sagittal plane
Afocal systems with object/image in infinity
Definition with field angle w
angular amplification

\[\gamma = \frac{\tan w'}{\tan w} = \frac{nh}{n' h'} \]

Relation with finite-distance magnification

\[\beta \cdot \gamma = -\frac{f}{f'} \]
Axial magnification

Approximation for small Δz and $n = n'$

\[
\alpha = \frac{\Delta z'}{\Delta z} = -\beta^2 \cdot \frac{f'}{f} \cdot \frac{1}{1 - \frac{\beta \cdot \Delta z}{f}}
\]

\[
\alpha = -\beta^2 = -\frac{\tan^2 u}{\tan^2 u'}
\]
- Distance object-image: (transfer length)
 \[L = f' \left(2 + m + \frac{1}{m} \right) \]

- Two solution for a given L with different magnifications
 \[m = \frac{L}{2f'} - 1 \pm \sqrt{\left(\frac{L}{2f'} \right)^2 - \frac{L}{f'}} \]

- No real imaging for \(L < 4f \)
Magnification parameter M:
defines ray path through the lens

\[M = \frac{U' + U}{U' - U} = \frac{1 + \beta}{1 - \beta} = \frac{2f}{s} + 1 = \frac{2f}{s'} - 1 \]

Special cases:
1. $M = 0$: symmetrical 4f-imaging setup
2. $M = -1$: object in front focal plane
3. $M = +1$: object in infinity

The parameter M strongly influences the aberrations
- **Image in infinity:**
 - collimated exit ray bundle
 - realized in binoculars

- **Object in infinity**
 - input ray bundle collimated
 - realized in telescopes
 - aperture defined by diameter not by angle
Imaging by a lens in air:

- **Lens Maker's Formula**
 \[
 \frac{1}{s'} - \frac{1}{s} = \frac{1}{f}
 \]

- **Magnification**
 \[
 \beta = \frac{s'}{s}
 \]

- **Real imaging:**
 \(s < 0, \; s' > 0 \)

- **Intersection lengths** \(s, s' \) measured with respective to the principal planes \(P, P' \)
Imaging equation in inverse representation with refractive power and vergence $1/s$: linear behavior
Imaging equation according to Newton:

\[z \cdot z' = f \cdot f' \]

distances \(z, z' \) measured relative to the focal points
- Two lenses with distance d

 \[F = F_1 + F_2 - \frac{d \cdot F_1 \cdot F_2}{n} \]

- Focal length
distance of inner focal points e

 \[f = \frac{f_1 \cdot f_2}{f_1 + f_2 - d} = \frac{f_1 \cdot f_2}{e} \]

- Sequence of thin lenses close together

 \[F = \sum_{k} F_k \]

- Sequence of surfaces with relative ray heights h_j, paraxial

 \[F = \sum_{k} \frac{h_k}{h_1} \cdot (n'_k - n_k) \cdot \frac{1}{r_k} \]

- Magnification

 \[\beta = \frac{s'_1}{s_1} \cdot \frac{s'_2}{s_2} \cdots \frac{s'_k}{s_k} \cdot \frac{n_1}{n'_k} \]
- **Focal length**
 - \(e \): tube length

- **Image location**

\[
f' = \frac{f'_1 \cdot f'_2}{f'_1 + f'_2 - d} = \frac{f'_1 \cdot f'_2}{e}
\]

\[
s'_2 = \frac{(f'_1 - d) \cdot f'_2}{f'_1 + f'_2 - d} = \frac{(f'_1 - d) \cdot f'}{f'_1}
\]
- Paraxial raytrace transfer
 \[y_j = y_{j-1} + d_{j-1} \cdot U_{j-1} \quad U_j' = U_{j-1} \]

- Matrix formulation
 \[
 \begin{pmatrix}
 y_j' \\
 U_j'
 \end{pmatrix} =
 \begin{pmatrix}
 1 & d_{j-1} \\
 0 & 1
 \end{pmatrix}
 \begin{pmatrix}
 y_j \\
 U_j
 \end{pmatrix}
 \]

- Paraxial raytrace refraction
 \[y_j = y_{j-1} \quad i_j = \rho_j \cdot y_j + U_{j-1} \quad i_j' = \frac{n_j}{n_j'} i_j \]
 \[U_j' = U_{j-1} - i_j + i_j' \]

- Inserted
 \[U_j' = \frac{\rho_j \cdot (n_j' - n_j)}{n_j} y_j + \frac{n_j}{n_j'} U_{j-1} \]

- Matrix formulation
 \[
 \begin{pmatrix}
 y_j' \\
 U_j'
 \end{pmatrix} =
 \begin{pmatrix}
 \frac{1}{n_j} & \frac{0}{n_j'} \\
 \frac{-\rho_j \cdot (n_j' - n_j)}{n_j} & \frac{n_j}{n_j'}
 \end{pmatrix}
 \begin{pmatrix}
 y_j \\
 U_j
 \end{pmatrix}
 \]
Matrix formalism for finite angles

\[
\begin{pmatrix}
 y'_j \\
 \tan u'_j
\end{pmatrix} =
\begin{pmatrix}
 A & B \\
 C & D
\end{pmatrix}
\cdot
\begin{pmatrix}
 y_j \\
 \tan u_j
\end{pmatrix}
\]
- Linear relation of ray transport
- Simple case: free space propagation

- General case: paraxial segment with matrix ABCD-matrix:

\[
\begin{pmatrix} x' \\ u' \end{pmatrix} = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \begin{pmatrix} x \\ u \end{pmatrix} = M \begin{pmatrix} x \\ u \end{pmatrix}
\]
Linear transfer of spation coordinate x and angle u

- Matrix representation

- Lateral magnification for $u=0$

- Angle magnification of conjugated planes

- Refractive power for $u=0$

- Composition of systems

- Determinant, only 3 variables

\[
\begin{align*}
 x' &= Ax + Bu \\
 u' &= Cx + Du \\

 \begin{pmatrix}
 x' \\
 u'
 \end{pmatrix} &= \begin{pmatrix}
 A & B \\
 C & D
 \end{pmatrix}
 \begin{pmatrix}
 x \\
 u
 \end{pmatrix}
 = M
 \begin{pmatrix}
 x \\
 u
 \end{pmatrix}
 \\

 A &= x'/x = \beta \\
 D &= u'/u = \gamma \\
 C &= u'/x \\

 M &= M_k \cdot M_{k-1} \cdots M_2 \cdot M_1 \\

 \det M &= AD - BC = \frac{n}{n'}
\end{align*}
\]
- System inversion
 \[M^{-1} = \begin{pmatrix} D & -B \\ -C & A \end{pmatrix} \]

- Transition over distance L
 \[M = \begin{pmatrix} 1 & L \\ 0 & 1 \end{pmatrix} \]

- Thin lens with focal length f
 \[M = \begin{pmatrix} 1 & 0 \\ -\frac{1}{f} & 1 \end{pmatrix} \]

- Dielectric plane interface
 \[M = \begin{pmatrix} 1 & 0 \\ 0 & \frac{n}{n'} \end{pmatrix} \]

- Afocal telescope
 \[M = \begin{pmatrix} 1 & L \\ \Gamma & \Gamma \end{pmatrix} \]
Calculation of intersection length

\[s' = \frac{A \cdot s + B}{C \cdot s + D} \]

Magnifications:
1. lateral

\[\beta = \frac{AD - BC}{C \cdot s + D} \]

2. angle

\[\gamma = C \cdot s + D = \frac{AD - BC}{A - C \cdot s'} \]

3. axial, depth

\[\alpha = \frac{ds'}{ds} = \frac{AD - BC}{(C \cdot s + D)^2} \]

Principal planes

\[a_H = \frac{AD - BC - D}{C} \]

\[a_H' = \frac{A - 1}{C} \]

\[a_F = \frac{A}{C} \]

\[a_F' = \frac{D}{C} \]
Direct phase space representation of raytrace: spatial coordinate vs angle
Direct phase space representation of raytrace: spatial coordinate vs angle
Grin lens with aberrations in phase space:
- continuous bended curves
- aberrations seen as nonlinear angle or spatial deviations
- Transition pupil-image plane: 90° rotation in phase space
- Planes Fourier inverse
- Marginal ray: space coordinate x ---> angle θ'
- Chief ray: angle θ ---> space coordinate x'
- Product of field size y and numerical aperture is invariant in a paraxial system

$$L = n \cdot y \cdot u = n' \cdot y' \cdot u'$$

- The invariant L describes the phase space volume (area)

- The invariance corresponds to
 1. Energy conservation
 2. Liouville theorem
 3. Constant transfer of information
- Geometrical optic:
 Etendue, light gathering capacity
- Paraxial optic: invariant of Lagrange / Helmholtz
- Invariance corresponds to conservation of energy
- Interpretation in phase space:
 constant area, only shape is changed at the transfer through an optical system

\[L_{\text{Geo}} = \frac{D}{2} \cdot \sin u \]
\[L = n \cdot y \cdot u = n' \cdot y' \cdot u' \]
- Laser optics: beam parameter product
 waist radius times far field divergence angle

- Minimum value of L:
 TEM$_{oo}$ - fundamental mode

- Elementary area of phase space:
 Uncertainty relation in optics

- Laser modes: discrete structure of phase space

- Geometrical optics: quasi continuum

- L is a measure of quality of a beam
 small L corresponds to a good focussability

$L_{GB} = w_o \cdot \theta_o$

$L_{GB} = \frac{\lambda}{\pi}$

$L_{GB} = w_n \cdot \theta_n = \frac{\lambda}{\pi} \cdot (2n+1)$
- Nonlinearity of the law of refraction defines the paraxial approximation
- Linear collineation: general approach of linear mapping, in case of larger angles with \(\tan(u) \)
- Graphical image construction in paraxial optics:
 - 3 rays determine location and size of the image: nodal ray, rays through focal points \(F, F' \)
 - are parallel to axis
- Imaging condition of a single lens: real image for object distances \(s>2f \), virtual images for
 closer object points
- Definition of lateral magnification, angle and depth magnification
- Lens makers formula \(-1/s + 1/s' = 1/f\) allows for paraxial imaging calculations
- Combination of several lenses, cascaded systems
 - For thin components near together: focal power \(F=1/f \) is additive
- Matrix calculus: practical calculation scheme with 2x2 ABCD matrices, connect ray
 coordinate and angle between two planes
- Phase space in optics: spatial coordinate \(y \) and angle \(u \)
- Illustration of optical systems and ray paths by a line in the phase space
- Lagrange invariant: constant area of a ray bundle in phase space, corresponds to the
 conservation of energy
Next lecture: Part 5 – Properties of optical systems
Date: Wednesday, 2012-05-16

Content:
5.1 Pupil
- basic notations
- pupil
- special rays
- vignetting
- ray sets

5.2 Special imaging setups
- telecentricity
- anamorphic imaging
- Scheimpflug condition

5.3 Canonical coordinates
- normalized properties
- pupil sphere

5.4 Delano diagram
- basic idea
- examples