Exercise 1: Refraction angle deviation

The angle deviation δ at a plane surface between two media with refractive indices n and n' can be written as

$$\sin \frac{\delta}{2} = \frac{n'-n}{2n} \cdot \frac{\sin i'}{\cos \frac{i+i'}{2}}$$

1a) Derive this formula.

1b) Derive a formula for δ as a function of n, n' and I alone

1c) Evaluate the paraxial small angle limit of this formula

Solution:

1a) Re-arrangement of the formula:

$$\sin \frac{\delta}{2} = \frac{n'-n}{2n} \cdot \frac{\sin i'}{\cos \frac{i+i'}{2}}$$

$$\sin \frac{\delta}{2} \cdot \cos \frac{i+i'}{2} = \frac{n'-n}{2n} \cdot \sin i'$$

Left side of this equation with $\delta = i - i''$
\[\sin \frac{\delta}{2} \cdot \cos \frac{i+i'}{2} = \sin \frac{i-i'}{2} \cdot \cos \frac{i+i'}{2} \]
\[= \left(\sin \frac{i}{2} \cdot \cos \frac{i'}{2} - \sin \frac{i'}{2} \cdot \cos \frac{i}{2} \right) \cdot \left(\cos \frac{i}{2} \cdot \cos \frac{i'}{2} - \sin \frac{i}{2} \cdot \sin \frac{i'}{2} \right) \]
\[= \sin i \cdot \cos i' + \sin i' \cdot \cos i - \sin \frac{i}{2} \cdot \sin \frac{i'}{2} = \frac{1}{2} \sin i - \frac{1}{2} \sin i' = \frac{1}{2} \sin i - \frac{n}{2n'} \sin i = \frac{n'-n}{2n} \sin i \]

1b) From the drawing we see:
\[i - \delta = i' \]
\[\sin(i - \delta) = \sin i' = \frac{n}{n'} \sin i \]
\[\sin i \cos \delta - \sin \delta \cos i = \frac{n}{n'} \sin i \]
\[\sin i \cdot \left(\frac{n^2}{n^2} - \cos \delta \right) = -\cos i \sin \delta \]
\[\sin^2 i \cdot \left(\frac{n^2}{n^2} - 2 \cdot \cos \delta + \cos^2 \delta \right) = \cos^2 i \cdot \left(1 - \cos^2 \delta \right) \]
\[\cos^2 \delta - 2 \cdot \sin^2 i \cos \delta + \sin^2 i \cdot \left(1 + \frac{n^2}{n^2} \right) - 1 = 0 \]

Quadratic equation for \(\cos i \) has the solution
\[
\cos \delta = \frac{n}{n'} \sin^2 i + \sqrt{1 + \frac{n^2}{n^2} \sin^4 i - \left(1 + \frac{n^2}{n^2} \right) \sin^2 i} \]

1c) For small angles, the \(\sin i \) is a small quantity and is approximated by its argument. The root is expanded as a Taylor expansion in the form
\[\cos \delta = \frac{n}{n'} \sin^2 i + \sqrt{1 + \frac{n^2}{n^2} \sin^4 i - \left(1 + \frac{n^2}{n^2} \right) \sin^2 i} \approx \frac{n}{n'} i^2 + \sqrt{1 - \left(1 + \frac{n^2}{n^2} \right) \sin^2 i} \]
\[\approx \frac{n}{n'} i^2 + \left[1 - \frac{1}{2} \left(1 + \frac{n^2}{n^2} \right) \sin^2 i \right] = 1 + i^2 \cdot \left(\frac{n}{n'} - \frac{1}{2} - \frac{n^2}{2n^2} \right) = 1 + i^2 \cdot \frac{2n'n'' - n^2}{2n^2} = 1 + i^2 \cdot \frac{(n' - n)^2}{2n^2} \]

With the expansion of the cos-function
\[\cos \delta = 1 - \frac{1}{2} \delta^2 \]

We get by comparing the quadratic terms
\[1 - \frac{1}{2} \delta^2 = 1 - i^2 \cdot \frac{(n' - n)^2}{2n^2} \]
\[\delta = i \cdot \frac{n' - n}{n'} = i \left(1 - \frac{n}{n'} \right) \]
\[\delta = i - i' \]
Exercise 2: Paraxial Imaging at a Surface

Derive the equation for the imaging condition at a single refracting surface with radius R

\[
\frac{n}{s} + \frac{n'}{s'} = \frac{n' - n}{nR}
\]

from the law of refraction. \(s \) and \(s' \) are the intersection lengths of the locations of object and image along the optical axis. Both are considered to be positive here.

Solution:

\(s \) is considered to be positive here.

Paraxial analysis of the triangles:

Triangle QPC: \[
\sin \psi \approx \psi = \frac{y}{R}
\]
Triangle OPQ: \[
\sin \varphi \approx \varphi = \frac{y}{s}
\]
Triangle O'PQ: \[
\sin \varphi' \approx \varphi' = \frac{y}{s'}
\]
Triangle OPC: \[
\varphi + \psi = i
\]
Triangle O'PC: \[
\varphi' = -i'
\]
Paraxial law of refraction: \[
n \cdot i = n' \cdot i'
\]

(6) in (5), \(i' \) eliminated: \[
\varphi' - \psi = -\frac{n}{n'} \cdot i
\]

(4) in (7), \(i \) eliminated: \[
\varphi' - \psi = -\frac{n}{n'} \left(\varphi + \psi \right)
\]

(1), (2), (3) in (8): \(\varphi, \varphi' \) and \(\psi \) eliminated:

\[
\frac{y}{s'} \cdot \frac{y}{R} = -\frac{n}{n'} \left(\frac{y}{s} + \frac{y}{R} \right)
\]

Rearranged, without \(y \):

\[
\frac{n'}{s'} + \frac{n}{s} = \frac{n' - n}{R}
\]
Exercise 3: Perfect Focussing Hyperbolic Surface

Assume an aspherical surface between two media with indices \(n \) and \(n' \) respectively. Compute the exact surface equation under the assumption, that collimated incoming ray bundle is focussed perfectly. Discuss the result and distinguish the cases \(n > n' \) and \(n < n' \).

Solution:

Refraction
\[n \cdot \sin i = n' \cdot \sin i' \tag{1} \]

Geometry of triangle
\[\tan u = \frac{y}{f-z} \tag{2} \]

Angle relation
\[i = u + i' \tag{3} \]

Surface normal
\[\tan i = -z'(y) \tag{4} \]

Therefore: Elimination of \(i, i', u \)

(3) into (1)
\[\frac{dz}{dy} = -\tan i = \frac{n' \sin u}{n + n' \cos u} \]

with
\[\sin u = \frac{y}{\sqrt{y^2 + (f-z)^2}}, \quad \cos u = \frac{f-z}{\sqrt{y^2 + (f-z)^2}} \]

gives
\[\frac{dz}{dy} = \frac{n'}{n + n' - \frac{f-z}{\sqrt{y^2 + (f-z)^2}}} = \frac{n' y}{n \sqrt{y^2 + (f-z)^2} + n'(f-z)} \]

Integration gives the equation
\[y^2 = \left(\frac{n^2}{n'^2} - 1 \right) z^2 - 2 f \cdot \left(\frac{n}{n'} - 1 \right) \cdot z \]

which is an hyperboloid for \(z(y) \) in the case of \(n' > n \) and an ellipsoid for \(n' < n \).

Easy derivation with the help of the Fermat principle of constant optical path length: condition:
\[n \cdot z + n' \sqrt{(f - z)^2 + y^2} = f \cdot n' \]

from this equation we get by rearranging:

\[(nz - fu')^2 = n'^2 \left[y^2 + (f - z)^2 \right] \]

which gives the same equation as before.
Exercise 4: Rod Lens

Consider a thick lens with symmetrical radii of curvature. Calculate the critical thickness d_c, for which an incoming ray parallel to the optical axis intersects the lens at its middle point. What happens for $d > d_c$ with the focal length of the lens?

Solution:

Intersection length at the first surface

$$\frac{1}{s'} = \frac{n-1}{nR}$$

critical thickness:

$$d_c = 2s = \frac{2nR}{n-1}$$

Focal length:

$$\frac{1}{f} = (n-1)\left(\frac{1}{R_1} - \frac{1}{R_2}\right) + \frac{(n-1)^2d}{nR_1R_2}$$

with $R_2 = R_1$:

$$\frac{1}{f} = (n-1)\frac{2}{R} - \frac{(n-1)^2d}{nR^2}$$

for $d = d_c$:

$$f = \infty$$

For $d > d_c$, the focal length becomes negative due to the internal focal point.
Exercise 5: Lagrange Invariant at a Single Surface

Consider an imaging surface between two media with indices \(n \) and \(n' \) and radius of curvature \(R \). Calculate the refracted marginal ray from an axis point with aperture angle \(u \) and from a finite object point with height \(y \) through the vertex of the surface in paraxial approximation. From the results calculate the property

\[
L = n \cdot y \cdot \sin u
\]

in the image space.

Solution:

Triangles with the chief ray (green, all length are considered to be positive here)

\[
\tan w \approx w = \frac{y}{s}, \quad \tan w' \approx w' = \frac{y'}{s'}
\]

Chief ray refraction in the vertex point

\[
n \cdot i = n' \cdot i'
\]

with

\[
w = i, \quad w' = i'
\]

we get

\[
n \cdot w = n' \cdot w', \quad \frac{n \cdot y}{s} = \frac{n' \cdot y'}{s'}
\]

\[
\frac{s}{s'} = \frac{n \cdot y}{n' \cdot y'}
\]

Triangles with marginal ray (red):

\[
h = s \cdot \tan u \approx s \cdot u = s' \cdot u'
\]

\[
\frac{s}{s'} = \frac{u'}{u}
\]

Elimination of \(s, s' \):

\[
\frac{s}{s'} = \frac{u'}{u} = \frac{ny}{n' \cdot y'}
\]

\[
L = nyu = n' \cdot y' \cdot u'
\]