Computational Photonics

Dr. rer. nat. Thomas Kaiser
SS 2019
Introduction
What problems are solved by Computational Photonics?

Development
- Design of structures with a certain functionality
- Performance evaluation prior to fabrication
- Tolerance management

Research
- Unveiling inaccessible properties (electromagnetic field distribution)
- Checking physical models / theories
Introduction

• What is Computational Photonics?
 – rather unspecific name
 – different levels of abstraction:
 • Ray Optics → “Optical System Design” (Prof. Groß)
 • Wave Optics → “Optical Modelling” (Prof. Wyrowski / Zeitner)
 • EM Optics → this course
 • Quantum Optics → Dr. Setzpfandt

This course takes an electromagnetic field-based approach on optics with a focus on numerical methods for partial differential equations. We will take a research-oriented approach.
Introduction

• For whom is this course?

<table>
<thead>
<tr>
<th>Intrinsic motivation</th>
<th>Extrinsic motivation</th>
</tr>
</thead>
<tbody>
<tr>
<td>You follow a research-oriented career path</td>
<td>Modern topic in a CV</td>
</tr>
<tr>
<td>You want to gain deeper numerical insight into electromagnetic theory</td>
<td>“easy credit points” (true?)</td>
</tr>
<tr>
<td>You want to enhance your already existing coding skills</td>
<td></td>
</tr>
<tr>
<td>You think Maxwell’s equations are the coolest thing you’ve ever seen and want to learn how to deal with them in real world situations</td>
<td></td>
</tr>
</tbody>
</table>

• Alternatives to this course
 – Courses “Optical System Design” and “Waveoptical Modelling” take a much more industry-oriented approach and need less basic programming skills to succeed
• Prerequisites
 – Good basic knowledge in MATLAB or Python (this is not a basic programming course!)
 – Solid mathematical background in PDE
 – Knowledge about electromagnetic field theory (Bachelor level Electrodynamics or Master level Fundamentals of modern optics)
 – Knowledge about numerical basic techniques on a Bachelor level (see 1st seminar & additional material)
Organization
Organization

- People

Dr. rer. nat. Thomas KAISER
Email: thomas.kaiser.1@uni-jena.de
Phone: +49(0)3641 | 9-47572

Prof. Dr. Thomas PERTSCH
Email: thomas.pertsch@uni-jena.de
Phone: +49(0)3641 | 9-47560
ResearcherID: M-2876-2015
google scholar profile

M.Sc. Nils GEIB
Email: nils.geib@uni-jena.de
Phone: +49(0)3641 | 9-47575
NanoScopeFutur-2D

M.Sc. Andres Ricardo VEGA PEREZ
Email: andres.vega@uni-jena.de
Phone: +49(0)3641 | 9-47575

Python expert
MATLAB expert

LECTURE

SEMINAR
• **Lecture**
 – every Friday (not next week Apr 19: public holiday!)
 08:30-10:00 am, Auditorium ACP

• **Seminars**
 – biweekly Friday 10:15-11:45 am, Computer Pool ACP
 (depending on # of participants, will be announced)
 – you get 5 homework programming tasks which you have to hand in, but they are not graded
 – they are discussed in the seminars (you get feedback)

• **Grading**
 – You write a final exam. The questions will derive ≈70% from the lecture and ≈30% from the seminar tasks. The seminars themselves are for learning (no seminar grades)
• **Resources**

 – Website: www.iap.uni-jena.de/teaching.html

 – Moodle: moodle.uni-jena.de
 (under construction)

 – Pingo: pingo.coactum.de/421066
 (Live Feedback session code)

 – e-Mail: teaching-nanooptics@uni-jena.de
 (all your seminar solutions go there as a zip archive! See seminars for details)
Topics
• Matrix Method for stratified media

• Mode solvers
Topics

- Finite Difference Time Domain (FDTD)
- Beam Propagation Method (BPM)
Topics

• Fourier Modal Method (FMM)

• Finite Element Method (FEM)
Recap: Maxwell’s equations

→ see blackboard discussion
What to do in the next 2 weeks?

... in case you are bored ;)

Homework

- Consider, if this lecture is right for you
- Check online resources for self-check
- Try out small programming example tasks we put online
- Recap FOMO, especially Maxwells equations, stratified media