Tilt operator for electromagnetic fields and its application to propagation through plane interfaces

Site Zhang, Huying Zhon, Daniel Asoubar, Frank Wyrowski
Friedrich Schiller University, Jena, Germany

Michael Kuhn
LightTrans VirtualLab UG, Jena, Germany
What Is Field Tilting?

• Assume an electromagnetic field is given on a plane in a homogeneous medium.
• A tilt operator calculates from that the field on a plane which is arbitrarily rotated to the initial plane.
Importance of Field Tilting

- Propagation operators provide fields on parallel planes.

- Various reasons to overcome that:
 - Detection of light on tilted planes
 - Tilted interfaces in case of mirrors, prisms, gratings, ...
Plane Interface or Grating

- Single plane wave

![Diagram showing incident plane wave, reflected plane wave, and transmitted plane wave. The diagram also includes a grating with labels indicating Fresnel equations or grating solver like FMM.](image-url)
Plane Interface or Grating

- General beam
• General beam
Importance of Field Tilting

• Propagation operators provide fields on parallel planes.

• Various reasons to overcome that:
 – Detection of light on tilted planes
 – Tilted interfaces in case of mirrors, prisms, gratings, ...
 – Tolerancing
Tolerancing

Free-space propagation

Component operator, e.g. geometrical optics for lens
Tolerancing

Light Source

Free-space propagation

Component operator, e.g. geometrical optics for lens
Tolerancing

Free-space propagation + tilt

Component operator, e.g. geometrical optics for lens
Importance of Field Tilting

- Propagation operators provide fields on parallel planes.

- Various reasons to overcome that:
 - Detection of light on tilted planes
 - Tilted interfaces in case of mirrors, prisms, gratings, ...
 - Tolerancing
Existing Tilt Technology

- Problem:
 - Procedure works with a non-equitidistantly sampled field in k-space.
 - Such an interpolation is not well defined.

- With our new method we have solved the problem.
Plane Wave Decomposition

- Plane wave decomposition
 - A general beam distribution on x-y plane

\[
V_l(\rho) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} A_l(\kappa) e^{i\kappa \cdot \rho} \, dk_x \, dk_y ,
\]

with

\[
A_l(\kappa) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} V_l(\rho) e^{-i\kappa \cdot \rho} \, dx \, dy .
\]

\[
\rho = \begin{pmatrix} x \\ y \end{pmatrix}, \quad \kappa = \begin{pmatrix} k_x \\ k_y \end{pmatrix}
\]
Concept in *k*-Space

- First task: Find *k*-vector positions in both planes
- Second task: Find corresponding values of angular spectrum in initial plane
Concept in k-Space

- First task: Find k-vector positions in both planes.
Concept in k-Space

- First task: Find k-vector positions in both planes
- 1st projection: from the initial κ-plane to the surface of Edward sphere.
Concept in k-Space

- First task: Find k-vector positions in both planes
- 1st projection: from the initial κ-plane to the surface of Edward sphere.
- 2nd projection: from the surface of Edward sphere to tilded plane in k-space
- Conclusion: Pixel deformed and sampling non-equidistant
Algorithm Flow Tilt Operator

- **input angular spectrum**
- **equidistant \(\kappa \)-grid**
- **find a new equidistant grid**
- **non-equidistant \(\bar{\kappa} \)-grid**

\(\kappa \)-plane

\(\bar{\kappa} \)-plane
Algorithm Flow Tilt Operator

- Input angular spectrum
- Non-equidistant κ-grid
- Equidistant $\overline{\kappa}$-grid

$T^{-\frac{1}{2}}$
Concept in k-Space

- First task: Find k-vector positions in both planes
- Second task: Find corresponding values of angular spectrum in initial plane
Algorithm Flow Tilt Operator

- **input angular spectrum**
- **non-equidistant \(\kappa \) - grid**
- **Scaling factors**
- **equidistant \(\bar{\kappa} \) - grid**

\[
\begin{align*}
\kappa \text{- plane} & \quad k_x \quad k_y \\
\bar{\kappa} \text{- plane} & \quad \bar{k}_x \quad \bar{k}_y
\end{align*}
\]
Scaling

- Amplitude scaling takes ratio of pixel areas in tilted and initial plane into account.
- We derived an analytical expression for that!
Scaling Factor Calculation

- Boundaries on the Tilted $\vec{\kappa}$ - plane
 - On the tilted $\vec{\kappa}$ - plane, the projected boundaries are constructed by two curves from ellipse and two lines.
2. Scaling Factor Calculation

- Boundaries on the Tilted κ-plane
 - On the tilted κ-plane, the projected boundaries are constructed by two curves from ellipse and two lines.
 - Three steps to calculate the sampling area s:
 1. Area $A_+ = |\sin \beta| \int_{p_x-0.5\Delta k_x}^{p_x+0.5\Delta k_x} \sqrt{a_+^2 - k_x^2} \, dk_x$
2. Scaling Factor Calculation

- Boundaries on the Tilted κ - plane
 - On the tilted κ - plane, the projected boundaries are constructed by two curves from ellipse and two lines.
 - Three steps to calculate the sampling area s:
 1. Area $A_+ = |\sin \beta| \int_{p_x-0.5\Delta k_x}^{p_x+0.5\Delta k_x} \sqrt{a_+^2 - k_x^2} \, dk_x$
 2. Area $A_- = |\sin \beta| \int_{p_x-0.5\Delta k_x}^{p_x+0.5\Delta k_x} \sqrt{a_-^2 - k_x^2} \, dk_x$
2. Scaling Factor Calculation

- Boundaries on the Tilted κ-plane
 - On the tilted κ-plane, the projected boundaries are constructed by two curves from ellipse and two lines.

- Three steps to calculate the sampling area s:
 1. Area $A_+ = |\sin \beta| \int_{p_x-0.5\Delta k_x}^{p_x+0.5\Delta k_x} \sqrt{a_+^2 - k_x^2} \, dk_x$;
 2. Area $A_- = |\sin \beta| \int_{p_x-0.5\Delta k_x}^{p_x+0.5\Delta k_x} \sqrt{a_-^2 - k_x^2} \, dk_x$;
 3. Area $\Delta A = \cos \beta \Delta k_y \Delta k_x$.

$$S = A_+ + \Delta A - A_-$$
Scaling

- Amplitude scaling takes ratio of pixel areas in tilted and initial plane into account.
- We derived an analytical expression for that!
- Very fast and accurate!
Algorithm Flow Tilt Operator

- **input angular spectrum**
- **interpolation**
- **resampled input spectrum**
- **Scaling factors**
- **output angular spectrum**

- **non-equidistant \(\kappa \)-grid**
- **equidistant \(\overline{\kappa} \)-grid**
Examples

- **Input**
 - 45° - polarized Gaussian
 - Waist Radius 100×100 μm
 - 95×95 sampling points
Examples

- **Input**
 - 45° - polarized Gaussian
 - Waist Radius 100×100 μm
 - 95×95 sampling points

- **Simulations**
 - Input plane x-o-y
 - Tilting around x-axis
 - Output plane x-o-y
 - angle from 0° to 60°
 - With a step of 20°
Examples

Amplitude (E_x)

$\kappa_0 = (0, -4.04 \times 10^6)^T \text{ 1/m}$

$\kappa_0 = (0, -7.59 \times 10^6)^T \text{ 1/m}$

$\kappa_0 = (0, -1.02 \times 10^7)^T \text{ 1/m}$

Phase

$\frac{\pi}{2} = (0, 0)$

$\frac{\pi}{2} = (0, -7.59 \times 10^6)$

$\frac{\pi}{2} = (0, -1.02 \times 10^7)$
Algorithm Flow Tilt Operator

- Input angular spectrum
 - Non-equidistant κ-grid
 - Interpolation
 - Resampled input spectrum
 - Scaling factors
 - Equidistant $\bar{\kappa}$-grid
 - Output angular spectrum
Interpolation Comparison

• Non-equidistant Interpolation
 – To resample the input angular spectrum on a non-equidistant $\mathbf{\kappa}$-grid, certain interpolation techniques are applied
 – Rigorous interpolation: Sinc-pointwise interpolation
 – Approximations: Cubic 4p, Cubic 6p and Cubic 8p interpolation

• Comparison
 – The same input as previous simulations
 – Result from Sinc-pointwise interpolation as a reference
 – Compare the results from other interpolation techniques with the reference
Interpolation Comparison

Deviation from the Reference

<table>
<thead>
<tr>
<th>Interpolation Method</th>
<th>Tilting Angle β (°)</th>
<th>20</th>
<th>40</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cubic 4P</td>
<td></td>
<td>0.005602 %</td>
<td>0.006940 %</td>
<td>0.000214 %</td>
</tr>
<tr>
<td>Cubic 6P</td>
<td></td>
<td>0.000696 %</td>
<td>0.000861 %</td>
<td>0.000025 %</td>
</tr>
<tr>
<td>Cubic 8P</td>
<td></td>
<td>0.000066 %</td>
<td>0.000076 %</td>
<td>0.000002 %</td>
</tr>
</tbody>
</table>
Efficiency Tests

<table>
<thead>
<tr>
<th>Methods based on Rigorous Theory</th>
<th>Total Time¹ (s)</th>
<th>Kernel Loop² (s)</th>
<th>Deviation (%)</th>
<th>Sampling Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>SincP.W.</td>
<td>196.570</td>
<td>194.665</td>
<td>0</td>
<td>207×183</td>
</tr>
<tr>
<td>Cubic(8p)</td>
<td>2.183</td>
<td>0.199</td>
<td>0.000151</td>
<td></td>
</tr>
<tr>
<td>Cubic(6p)</td>
<td>2.021</td>
<td>0.100</td>
<td>0.00148</td>
<td></td>
</tr>
<tr>
<td>Cubic(4p)</td>
<td>1.976</td>
<td>0.087</td>
<td>0.0169</td>
<td></td>
</tr>
<tr>
<td>Parabasal Approximation</td>
<td>2.104</td>
<td>0.025</td>
<td>0.00523</td>
<td>207×207</td>
</tr>
</tbody>
</table>

¹Total Time: contains a FFT and a inverse FFT process.

²Kernel Loop: contains the kernel process of the tilt operation. For example, in the rigorous method the non-equidistant interpolation is performed within this loop.
Plane Interface Propagation

- An illustrative example
 - x – polarized Gaussian input;
 - Propagated field (SPW);
 - Propagated field on interface (tilt);

\[\kappa_0 = (0, -5.90 \times 10^6) T 1/m \]
An illustrative example
- Reflection at the interface;
- Rotation of reflected field;
- Propagation of rotated field (SPW);

\[
\kappa_0 = (0, -5.90 \times 10^6)^T \frac{1}{m}
\]
An illustrative example

- Transmission at the interface;
- Rotation of transmitted field;
- Propagation of rotated field (SPW).

$$\kappa_0 = (0, -5.90 \times 10^6)^T \frac{1}{m}$$
Plane Interface Propagation: Brewster Angle

- Brewster angle \((n_1 = 1, n_2 = 2)\)
 - At \(\theta_B = 63.43^\circ\) incidence;
 - Input: 45°-polarized Gaussian;
 - Reflection;
 - Transmission.
• Assume reflection interaction with plane interface or grating (zeroth order).
• Assume input and output planes are orthogonal to propagation direction.
• Conclusion in k-space: sampling grid is invariant
• No tilt operator necessary.
• Very efficient rigorous reflection algorithm follows.
Treatment of Smooth Phase Terms

<table>
<thead>
<tr>
<th>Operators</th>
<th>Analytical treatment of smooth phase</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Linear Phase</td>
</tr>
<tr>
<td>Tilt</td>
<td></td>
</tr>
<tr>
<td>Rigorous</td>
<td>Yes</td>
</tr>
<tr>
<td>Parabasal Approx.</td>
<td>Yes</td>
</tr>
<tr>
<td>Reflection</td>
<td>Yes</td>
</tr>
<tr>
<td>Planar Interface and Grating</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Numerically efficient treatment of operators on basis of parabasal decomposition technique (PDT).
Prism Modeling

- Prism modeling requires a sequence of free space and plane interface propagation steps.
Example: Five Wavelengths with Same Weight

- Input angle: 60°
Conclusion

- Tilt operator of great concern in physical optics modeling, e.g., for rigorous beam propagation through plane interfaces, prisms, and gratings.
- We presented a well-defined and fast rigorous method.
- Operators allow analytical treatment of linear phase terms. That allows efficient handling of smooth phase terms by parabasal field decomposition.
We implement techniques in new programmable components for VirtualLab™. Will be available for all VirtualLab™ users soon.