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Time schedule 

1 16.10. Introduction 

Introduction, Zemax interface, menues, file handling, preferences, Editors, updates, windows, 

Coordinate systems and notations, System description, Component reversal, system insertion, 

scaling, 3D geometry, aperture, field, wavelength 

2 23.10. Properties of optical systems I 
Diameters, stop and pupil, vignetting, Layouts, Materials, Glass catalogs, Raytrace, Ray fans 

and sampling, Footprints 

3 30.10. Properties of optical systems II 
Types of surfaces, Aspheres, Gratings and diffractive surfaces, Gradient media, Cardinal 

elements, Lens properties, Imaging, magnification, paraxial approximation and modelling 

4 06.11. Aberrations I 
Representation of geometrical aberrations, Spot diagram, Transverse aberration diagrams, 

Aberration expansions, Primary aberrations,  

5 13.+27.11. Aberrations II Wave aberrations, Zernike polynomials, Point spread function, Optical transfer function 

6 04.12. Advanced handling 

Telecentricity, infinity object distance and afocal image, Local/global coordinates, Add fold 

mirror, Vignetting, Diameter types, Ray aiming, Material index fit, Universal plot, Slider,IO of 

data, Multiconfiguration, Macro language, Lens catalogs 

7 11.12. Optimization I 
Principles of nonlinear optimization, Optimization in optical design, Global optimization 

methods,  Solves and pickups, variables, Sensitivity of variables in optical systems 

8 18.12. Optimization II Systematic methods and optimization process, Starting points, Optimization in Zemax 

9 08.01 Imaging   Fundamentals of Fourier optics, Physical optical image formation, Imaging in Zemax 

10 15.01. Illumination 
Introduction in illumination, Simple photometry of optical systems, Non-sequential raytrace, 

Illumination in Zemax 

11 22.01. Correction I 

Symmetry principle, Lens bending, Correcting spherical aberration, Coma, stop position, 

Astigmatism, Field flattening, Chromatical correction, Retrofocus and telephoto setup, Design 

method 

12 29.01. Correction II 
Field lenses, Stop position influence, Aspheres and higher orders, Principles of glass 

selection, Sensitivity of a system correction, Microscopic objective lens, Zoom system 

13 05.02. Physical optical modelling Gaussian beams, POP propagation, polarization raytrace, coatings 



1. Fundamentals of Fourier optics 

2. Physical optical image formation 

3. Imaging in Zemax   
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Definitions of Fourier Optics 

 

 Phase space with spatial coordinate x and  

  1. angle   

  2. spatial frequency  in mm-1 

  3. transverse wavenumber kx 

 

 

 
 

 

 Fourier spectrum 

 

   corresponds to a plane wave expansion 

 

 

 

 

 Diffraction at a grating with period g: 

   deviation angle of first diffraction order varies linear with  = 1/g 
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 Arbitrary object expaneded into a 

spatial 

   frequency spectrum by Fourier 

   transform 

 Every frequency component is 

   considered separately 

 To resolve a spatial detail, at least 

   two orders must be supported by the 

   system 
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Grating Diffraction and Resolution 
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 A structure of the object is resolved, if the first diffraction order is propagated 

  through the optical imaging system 

 

 The fidelity of the image increases with the number of propagated diffracted orders 
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Resolution: Number of Supported Orders 
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 Improved resolution by oblique illumination in microscopy 

 

 Enhancement only in one direction 

  

centered illumination:

supported orders in y : 0 , +1 , -1 

oblique illumination :

supported orders in y : 0 , +1 , + 2   

0th order y

1st order in y

2nd order in y

- 1st order in y

no change 

in x direction
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Oblique Illumination in Microscopy 
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Fourier Optical Fundamentals 

 

 Helmholtz wave equation: 

   Propagation with Green‘s function g, 

   Amplitude transfer function, impulse response 

 

 For shift-invariance: 

   convolution 

 

 Green‘s function of a spherical wave 

    

   Fresnel approximation 

 

  Calculation in frequency space: product 

 

     

 

 Optical systems: 

   Impulse response g(x,y) is coherent transfer function, point spread function (PSF). 

   G(x,y) corresponds to the complex pupil function 

 

 Fourier transform: corresponds to a plane wave expansion 
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9 Imaging 

Diffraction at the System Aperture 

 

 Self luminous points: emission of spherical waves 

 Optical system: only a limited solid angle is propagated, the truncaton of the spherical wave 

   results in a finite angle light cone  

 In the image space: uncomplete constructive interference of partial waves, the image point 

   is spreaded 

 The optical systems works as a low pass filter 
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Optical Transfer Function: Definition 

 

 Normalized optical transfer function 

   (OTF) in frequency space 

 

 

 

 Fourier transform of the Psf-  

   intensity 

 

 OTF: Autocorrelation of shifted pupil function, Duffieux-integral 

 

 

 

 

 

 

 

 Absolute value of OTF: modulation  transfer function (MTF) 

 

 MTF is numerically identical to contrast of the image of a sine grating at the 

   corresponding spatial frequency 
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Interpretation of the Duffieux Iintegral 

 

 Interpretation of the Duffieux integral: 

 overlap area of 0th and 1st diffraction order, 

 interference between the two orders 

 

 The area of the overlap corresponds to the 

   information transfer of the structural details 

 

 Frequency limit of resolution: 

   areas completely separated 
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Optical Transfer Function of a Perfect System 

 

 Aberration free circular pupil: 

   Reference frequency 

 

 

 

 Cut-off frequency: 

 

 

 

 Analytical representation 

 

 

 

 

 

 Separation of the complex OTF function into: 

   - absolute value: modulation transfer MTF 

   - phase value: phase transfer function PTF 
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I Imax V 

0.010 0.990 0.980 

0.020 0.980 0.961 

0.050 0.950 0.905 

0.100 0.900 0.818 

0.111 0.889 0.800 

0.150 0.850 0.739 

0.200 0.800 0.667 

0.300 0.700 0.538 
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Contrast / Visibility 

 The MTF-value corresponds to the intensity contrast of an imaged sin grating 

 Visibility 

   

 

 The maximum value of the intensity 

     is not identical to the contrast value 

     since the minimal value is finite too 

 

 Concrete values:  

 

minmax

minmax

II

II
V






I(x)

-2 -1.5 -1 -0.5 0 1 1.5 2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

I
max

I
min

object

image

peak

decreased

slope

decreased

minima

increased

13 



9 Imaging 

Fourier Optics – Point Spread Function 

 

 Optical system with magnification m

   Pupil function P, 

   Pupil coordinates xp,yp 

 

 

 PSF is Fourier transform  

  of the pupil function 

  (scaled coordinates) 
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9 Imaging 

Fourier Theory of Coherent Image Formation 

 

 Transfer of an extended  

    object distribution I(x,y)  

 

 In the case of shift invariance 

   (isoplanasie): 

   coherent convolution of fields 

 

 Complex fields are 

    additive 
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Fourier Theory of Coherent Image Formation 
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Fourier Theory of Incoherent Image Formation 
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  Transfer of an extended  

    object distribution I(x,y)  

 

 In the case of shift invariance 

   (isoplanasie): 

   incoherent convolution 

 

 Intensities are additive 
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9 Imaging 

Fourier Theory of Incoherent Image Formation 
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Incoherent Image Formation in Frequency Space 

 

  Incoherent illumination: 

   No correlation between neighbouring object points 

   Superposition of intensity in the image  

 

 

 

 In the case of shift invariance  

   (isoplanasie): 

   Incoherent imaging with convolution 

 

 

 

 In frequency space:  

  Product of spectra, linear transfer theory 

  The spectrum of the psf works as low pass filter onto the object spectrum 

  Optical transfer function 
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 Circular disc with diameter 

   D = d x Dairy 

 

 Small d << 1 : Airy disc 

 

 Increasing d:  

   Diffraction ripple disappear 
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Incoherent Image of a Circular Disc 
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Comparison Coherent – Incoherent Images 
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Possible options in Zemax: 

 Convolution of image with Psf 

      1. geometrical 

      2. with diffraction  

 Geometrical raytrace analysis  

      1. simple geometrical shapes (IMA-files) 

      2. bitmaps 

 Diffraction imaging: 

     1. partial coherent 

     2. extended with variable PSF 

 Structure of options in Zemax not clear 

 Redundance 

 Field definition and size scaling not good 

 Numerical conditions and algorithms partially not stable 

22 9 Imaging 

Imaging in Zemax 



 Field height: location of object in the specific coordinates of the system 

     - zero padding included (not: size = diameter) 

     - image size shon is product of pixel number x pixel size 

     - can be full field or centre of local extracted part of the field   

 PSF-X/Y points: number of field points to incorporate the changes of the PSF, 

     interpolation between this  

     coarse grid 

 Object: bitmap 

 PSF: geometrical or diffraction  

23 9 Imaging 

General Image Simulation 



 Total field size:  defined by system 

 Field height/size: reduced field corresponding to the structure as considered in the 

                                imaging calculation 

 Field position:  reference point of the considered reduced field (center) in the total field 

 Image size:  size of the represented field size, should be a little larger as field size 

                                to clearly see the boundary 

                                In some tools calculated as product of pixel number and pixel size 

24 9 Imaging 

General Image Simulation 
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Geometrical imaging by raytrace 

 Binary IMA-files with geometrical shapes 

 Choice of: 

     - field size 

     - image size,  

     - wavelengths 

     - number of rays  

 Interpolation possible  

25 9 Imaging 

Geometric Imaging I 



Geometrical imaging by raytrace  

of bitmaps 

 Extension of 1st option:  

     can be calculated at any surface 

 If full field is used, this  

     corresponds to a footprint with  

     all rays 

 Example: light distribution 

     in pupil, at last surface, in image 

26 9 Imaging 

Geometric Imaging II 



 Different types of partial coherent model algorithms possible 

 Only IMA-Files can be used as objects 

  describes the coherence factor (relative pupil filling) 

 Control and algorithms not clear, not stable   
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Patial Coherent Imaging 



 Classical convolution of psf 

     with pixels of IMA-File 

 Coherent and incoherent  

     model possible 

 PSF may vary over field  

     position   

28 9 Imaging 

Extended Diffraction 


