Lens Design II

Lecture 1: Aberrations and optimization
2017-10-16

Herbert Gross
Preliminary Schedule Lens Design II 2017

<table>
<thead>
<tr>
<th>Week</th>
<th>Date</th>
<th>Topic</th>
<th>Subtopics</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>16.10</td>
<td>Aberrations and optimization</td>
<td>Reiteration</td>
</tr>
<tr>
<td>2</td>
<td>23.10</td>
<td>Structural modifications</td>
<td>Zero operands, lens splitting, lens addition, lens removal, material selection</td>
</tr>
<tr>
<td>3</td>
<td>30.10</td>
<td>Aspheres</td>
<td>Correction with aspheres, Forbes approach, optimal location of aspheres, several aspheres</td>
</tr>
<tr>
<td>4</td>
<td>06.11</td>
<td>Freeforms</td>
<td>Freeform surfaces, general aspects, surface description, quality assessment, initial systems</td>
</tr>
<tr>
<td>5</td>
<td>13.11</td>
<td>Field flattening</td>
<td>Astigmatism and field curvature, thick meniscus, plus-minus pairs, field lenses</td>
</tr>
<tr>
<td>6</td>
<td>20.11</td>
<td>Chromatical correction I</td>
<td>Achromatization, axial versus transversal, glass selection rules, burried surfaces</td>
</tr>
<tr>
<td>7</td>
<td>27.11</td>
<td>Chromatical correction II</td>
<td>Secondary spectrum, apochromatic correction, aplanatic achromates, spherochromatism</td>
</tr>
<tr>
<td>8</td>
<td>04.12</td>
<td>Special correction topics I</td>
<td>Symmetry, wide field systems, stop position, vignetting</td>
</tr>
<tr>
<td>9</td>
<td>11.12</td>
<td>Special correction topics II</td>
<td>Telecentricity, monocentric systems, anamorphic lenses, Scheimpflug systems</td>
</tr>
<tr>
<td>10</td>
<td>18.12</td>
<td>Higher order aberrations</td>
<td>High NA systems, broken achromates, induced aberrations</td>
</tr>
<tr>
<td>11</td>
<td>08.01</td>
<td>Further topics</td>
<td>Sensitivity, scan systems, eyepieces</td>
</tr>
<tr>
<td>12</td>
<td>15.01</td>
<td>Mirror systems</td>
<td>special aspects, double passes, catadioptric systems</td>
</tr>
<tr>
<td>13</td>
<td>22.01</td>
<td>Zoom systems</td>
<td>Mechanical compensation, optical compensation</td>
</tr>
<tr>
<td>14</td>
<td>30.01</td>
<td>Diffractive elements</td>
<td>Color correction, ray equivalent model, straylight, third order aberrations, manufacturing</td>
</tr>
<tr>
<td>15</td>
<td>05.02</td>
<td>Realization aspects</td>
<td>Tolerancing, adjustment</td>
</tr>
</tbody>
</table>
1. Geometrical aberrations
2. Wave aberrations and Zernikes
3. Point spread function
4. Modulation transfer function
5. Principles of optimization
Optical Image Formation

- Perfect optical image:
 All rays coming from one object point intersect in one image point
- Real system with aberrations:
 1. transverse aberrations in the image plane
 2. longitudinal aberrations from the image plane
 3. wave aberrations in the exit pupil
Notations for an Optical System

- \(x, y \): object coordinates, especially object height
- \(x', y' \): image coordinates, especially image height
- \(x_p, y_p \): coordinates of entrance pupil
- \(x'_p, y'_p \): coordinates of exit pupil
- \(s \): object distance from 1st surface
- \(s' \): image distance from last surface
- \(p \): entrance pupil distance from 1st surface
- \(p' \): exit pupil distance from last surface
- \(\Delta x' \): sagittal transverse aberration
- \(\Delta y' \): meridional transverse aberration
Polynomial Expansion of Aberrations

- Representation of 2-dimensional Taylor series vs field y and aperture r
- Selection rules: checkerboard filling of the matrix
- Constant sum of exponents according to the order

<table>
<thead>
<tr>
<th>Aperture r</th>
<th>Field y</th>
<th>Spherical</th>
<th>Coma</th>
<th>Astigmatism</th>
</tr>
</thead>
<tbody>
<tr>
<td>r^0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>r^1 Defocus</td>
<td>y^0</td>
<td>y^1</td>
<td>y^2</td>
<td>y^3</td>
</tr>
<tr>
<td>r^2</td>
<td>r^1</td>
<td>$y^2 r^1 \cos^2 \theta$</td>
<td>$y^2 r^1 \cos^2 \theta$</td>
<td>$y^3 r^2 \cos^3 \theta$</td>
</tr>
<tr>
<td>r^3 Spherical primary</td>
<td>r^3</td>
<td>$y r^2 c\cos \theta$</td>
<td>$y r^2 c\cos \theta$</td>
<td>$y^2 r^3 \cos^2 \theta$</td>
</tr>
<tr>
<td>r^4</td>
<td></td>
<td>y^4</td>
<td>$y^2 r^3$</td>
<td>$y^4 r^1 \cos^2 \theta$</td>
</tr>
<tr>
<td>r^5 Spherical secondary</td>
<td>r^5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Image location

Primary aberrations / Seidel

Secondary aberrations
Pupil Sampling

- Ray plots
- Spot diagrams

- Sagittal ray fan
- Tangential ray fan
- Whole pupil area

\[
\begin{align*}
\Delta y & \quad \Delta x \\
\Delta y & \quad \Delta x
\end{align*}
\]
Spherical Aberration

- Typical chart of aberration representation
- Reference: at paraxial focus

Primary spherical aberration at paraxial focus

Wave aberration

<table>
<thead>
<tr>
<th>Tangential</th>
<th>Sagittal</th>
</tr>
</thead>
<tbody>
<tr>
<td>2λ</td>
<td>2λ</td>
</tr>
</tbody>
</table>

Transverse ray aberration

<table>
<thead>
<tr>
<th>$\Delta y'$</th>
<th>$\Delta x'$</th>
<th>$\Delta y'$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01 mm</td>
<td>0.01 mm</td>
<td>0.01 mm</td>
</tr>
</tbody>
</table>

Pupil:
- y-section
- x-section

Modulation Transfer Function (MTF)

- **MTF at paraxial focus**
- **MTF through focus for 100 cycles per mm**

Geometrical spot through focus

- 0.02 mm
- $-0.02 \text{ to } 0.02 \text{ mm}$

Ref: H. Zügge
Surface Contributions: Example

- Seidel aberrations: representation as sum of surface contributions possible
- Gives information on correction of a system
- Example: photographic lens

![Diagram of a photographic lens with labels for surfaces and aberrations]

<table>
<thead>
<tr>
<th>Surface</th>
<th>Sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>SI</td>
<td></td>
</tr>
<tr>
<td>SII</td>
<td></td>
</tr>
<tr>
<td>SIII</td>
<td></td>
</tr>
<tr>
<td>SIV</td>
<td></td>
</tr>
<tr>
<td>SVA</td>
<td></td>
</tr>
<tr>
<td>SVB</td>
<td></td>
</tr>
<tr>
<td>CVI</td>
<td></td>
</tr>
<tr>
<td>CVII</td>
<td></td>
</tr>
<tr>
<td>CIII</td>
<td></td>
</tr>
<tr>
<td>CIV</td>
<td></td>
</tr>
<tr>
<td>CVII</td>
<td></td>
</tr>
</tbody>
</table>

Aberration Types:
- Spherical Aberration (SI)
- Coma (SII)
- Astigmatism (SIII)
- Petzval field curvature (SIV)
- Distortion (SVA)
- Axial color (SVB)
- Lateral color (CVI)

Retrofocus F/2.8
Field: w=37°
Wave Aberration in Optical Systems

- Definition of optical path length in an optical system:
 Reference sphere around the ideal object point through the center of the pupil
- Chief ray serves as reference
 Difference of OPL : optical path difference OPD
- Practical calculation: discrete sampling of the pupil area,
 real wave surface represented as matrix
Pupil Sampling

- All rays start in one point in the object plane
- The entrance pupil is sampled equidistant
- In the exit pupil, the transferred grid may be distorted
- In the image plane a spreaded spot diagram is generated
Zernike Polynomials

- Expansion of wave aberration surface into elementary functions / shapes

\[W(r, \varphi) = \sum_{n} \sum_{m=-n}^{n} c_{nm} Z_{n}^{m}(r, \varphi) \]

- Zernike functions are defined in circular coordinates \(r, \varphi \)

\[Z_{n}^{m}(r, \varphi) = R_{n}^{m}(r) \cdot \begin{cases}
\sin (m \varphi) & \text{for } m < 0 \\
\cos (m \varphi) & \text{for } m > 0 \\
1 & \text{for } m = 0
\end{cases} \]

- Ordering of the Zernike polynomials by indices:
 - \(n \): radial
 - \(m \): azimuthal, sin/cos

- Mathematically orthonormal function on unit circle for a constant weighting function

- Direct relation to primary aberration types
Perfect Lateral Point Spread Function: Airy

Airy distribution:

- Gray scale picture
- Zeros non-equidistant
- Logarithmic scale
- Encircled energy
Circular homogeneous illuminated Aperture: intensity distribution

- transversal: Airy scale:
 \[D_{Airy} = \frac{1.22 \cdot \lambda}{NA} \]

- axial: sinc scale
 \[R_E = \frac{n \cdot \lambda}{NA^2} \]

- Resolution transversal better than axial: \(\Delta x < \Delta z \)

Scaled coordinates according to Wolf:
axial: \(u = 2 \pi \frac{z}{\lambda} \frac{n}{NA^2} \)
transversal: \(v = 2 \pi \frac{x}{\lambda} NA \)

Ref: M. Kempe
- Zernike coefficients c in λ

- Spherical aberration, Circular symmetry
 - $c = 0.2$

- Astigmatism, Split of two azimuths
 - $c = 0.3$

- Coma, Asymmetric
 - $c = 0.5$
 - $c = 0.7$
 - $c = 1.0$
Optical Transfer Function: Definition

- Normalized optical transfer function (OTF) in frequency space

\[
H_{OTF}(v_x, v_y) = \frac{\int \int |g(x_p, y_p)|^2 \cdot e^{-2\pi i(x_p v_x + y_p v_y)} \, dx_p \, dy_p}{\int \int |g(x_p, y_p)|^2 \, dx_p \, dy_p}
\]

- Fourier transform of the Psf-intensity

\[
H_{OTF}(v_x, v_y) = \hat{F}[I_{PSF}(x, y)]
\]

- OTF: Autocorrelation of shifted pupil function, Duffieux-integral

\[
H_{OTF}(v_x, v_y) = \frac{\int \int P(x_p + \frac{\lambda f v_x}{2}, y_p + \frac{\lambda f v_y}{2}) \cdot P^*(x_p - \frac{\lambda f v_x}{2}, y_p - \frac{\lambda f v_y}{2}) \, dx_p \, dy_p}{\int \int |P(x_p, y_p)|^2 \, dx_p \, dy_p}
\]

- Absolute value of OTF: modulation transfer function (MTF)

- MTF is numerically identical to contrast of the image of a sine grating at the corresponding spatial frequency
Optical Transfer Function of a Perfect System

- Aberration free circular pupil:

 \[v_o = \frac{a}{\lambda f} = \frac{\sin u'}{\lambda} \]

- Maximum cut-off frequency:

 \[v_{\text{max}} = 2v_0 = \frac{2na}{\lambda f} = \frac{2n \sin u'}{\lambda} \]

- Analytical representation

 \[H_{\text{MTF}}(v) = \frac{2}{\pi} \left[\arccos \left(\frac{v}{2v_0} \right) - \left(\frac{v}{2v_0} \right) \sqrt{1 - \left(\frac{v}{2v_0} \right)^2} \right] \]

- Separation of the complex OTF function into:
 - absolute value: modulation transfer MTF
 - phase value: phase transfer function PTF

 \[H_{\text{OTF}}(v_x, v_y) = H_{\text{MTF}}(v_x, v_y) \cdot e^{iH_{\text{PTF}}(v_x, v_y)} \]
Basic Idea of Optimization

- Topology of the merit function in 2 dimensions
- Iterative down climbing in the topology
Mathematical description of the problem:

- \(n \) variable parameters
- \(m \) target values
- Jacobi system matrix of derivatives, influence of a parameter change on the various target values, sensitivity function
- Scalar merit function
- Gradient vector of topology
- Hesse matrix of 2nd derivatives

Given:

- \(\vec{x} \)
- \(\vec{f}(\vec{x}) \)
- \(J_{ij} = \frac{\partial f_i}{\partial x_j} \)
- \(F(\vec{x}) = \sum_{i=1}^{m} w_i \cdot [y_i - f_i(\vec{x})]^2 \)
- \(g_j = \frac{\partial F}{\partial x_j} \)
- \(H_{jk} = \frac{\partial^2 F}{\partial x_j \partial x_k} \)
Optimization in Optical Design

- Merit function:
 Weighted sum of deviations from target values

- Formulation of target values:
 1. fixed numbers
 2. one-sided interval (e.g. maximum value)
 3. interval

- Problems:
 1. linear dependence of variables
 2. internal contradiction of requirements
 3. initial value far off from final solution

- Types of constraints:
 1. exact condition (hard requirements)
 2. soft constraints: weighted target

- Finding initial system setup:
 1. modification of similar known solution
 2. Literature and patents
 3. Intuition and experience

\[\Phi = \sum_{j=1}^{m} g_j \cdot \left(f_{j}^{\text{ist}} - f_{j}^{\text{soll}} \right)^2 \]
Goal of optimization:
Find the system layout which meets the required performance targets according of the specification

Formulation of performance criteria must be done for:
- Apertur rays
- Field points
- Wavelengths
- Optional several zoom or scan positions

Selection of performance criteria depends on the application:
- Ray aberrations
- Spot diameter
- Wavefornt description by Zernike coefficients, rms value
- Strehl ratio, Point spread function
- Contrast values for selected spatial frequencies
- Uniformity of illumination

Usual scenario:
Number of requirements and targets quite larger than degrees od freedom,
Therefore only solution with compromise possible
Ray path at a lens of constant focal length and different bending

Quantitative parameter of description X:

The ray angle inside the lens changes

The ray incidence angles at the surfaces changes strongly

The principal planes move

For invariant location of P, P' the position of the lens moves

\[X = \frac{R_1 + R_2}{R_2 - R_1} \]
Correcting Spherical Aberration: Lens Splitting

- Correction of spherical aberration: Splitting of lenses

- Distribution of ray bending on several surfaces:
 - smaller incidence angles reduces the effect of nonlinearity
 - decreasing of contributions at every surface, but same sign

- Last example (e): one surface with compensating effect

Ref: H. Zügge