Lens Design II

Lecture 7: Chromatical correction II
2016-11-30
Herbert Gross

Winter term 2016
Preliminary Schedule

<table>
<thead>
<tr>
<th></th>
<th>Date</th>
<th>Topic</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>19.10.</td>
<td>Aberrations and optimization</td>
<td>Repetition</td>
</tr>
<tr>
<td>2</td>
<td>26.10.</td>
<td>Structural modifications</td>
<td>Zero operands, lens splitting, lens addition, lens removal, material selection</td>
</tr>
<tr>
<td>3</td>
<td>02.11.</td>
<td>Aspheres</td>
<td>Correction with aspheres, Forbes approach, optimal location of aspheres, several aspheres</td>
</tr>
<tr>
<td>4</td>
<td>09.11.</td>
<td>Freeforms</td>
<td>Freeform surfaces</td>
</tr>
<tr>
<td>5</td>
<td>16.11.</td>
<td>Field flattening</td>
<td>Astigmatism and field curvature, thick meniscus, plus-minus pairs, field lenses</td>
</tr>
<tr>
<td>6</td>
<td>23.11.</td>
<td>Chromatical correction I</td>
<td>Achromatization, axial versus transversal, glass selection rules, buried surfaces</td>
</tr>
<tr>
<td>7</td>
<td>30.11.</td>
<td>Chromatical correction II</td>
<td>Secondary spectrum, apochromatic correction, spherochromatism</td>
</tr>
<tr>
<td>8</td>
<td>07.12.</td>
<td>Special correction topics I</td>
<td>Symmetry, wide field systems, stop position</td>
</tr>
<tr>
<td>9</td>
<td>14.12.</td>
<td>Special correction topics II</td>
<td>Anamorphotic lenses, telecentricity</td>
</tr>
<tr>
<td>10</td>
<td>21.12.</td>
<td>Higher order aberrations</td>
<td>High NA systems, broken achromates, induced aberrations</td>
</tr>
<tr>
<td>11</td>
<td>04.01.</td>
<td>Further topics</td>
<td>Sensitivity, scan systems, eyepieces</td>
</tr>
<tr>
<td>12</td>
<td>11.01.</td>
<td>Mirror systems</td>
<td>Special aspects, double passes, catadioptric systems</td>
</tr>
<tr>
<td>13</td>
<td>18.01.</td>
<td>Zoom systems</td>
<td>Mechanical compensation, optical compensation</td>
</tr>
<tr>
<td>14</td>
<td>25.01.</td>
<td>Diffractive elements</td>
<td>Color correction, ray equivalent model, straylight, third order aberrations, manufacturing</td>
</tr>
<tr>
<td>15</td>
<td>01.02.</td>
<td>Realization aspects</td>
<td>Tolerancing, adjustment</td>
</tr>
</tbody>
</table>
1. Partial dispersion
2. Apochromate
3. Spherochromatism
Relative partial dispersion

- Relative partial dispersion: Change of dispersion slope with λ
 Different curvature of dispersion curve

- Definition of local slope for selected wavelengths relative to secondary colors

$$P_{\lambda_1\lambda_2} = \frac{n(\lambda_1) - n(\lambda_2)}{n_C' - n_F'}$$

- Special λ-selections for characteristic ranges of the visible spectrum

$\lambda = 656 / 1014$ nm far IR
$\lambda = 656 / 852$ nm near IR
$\lambda = 486 / 546$ nm blue edge of VIS
$\lambda = 435 / 486$ nm near UV
$\lambda = 365 / 435$ nm far UV
The relative partial dispersion changes approximately linear with the dispersion for glasses

\[P_{\lambda_1, \lambda_2} = a_{\lambda_1, \lambda_2} \cdot \nu_d + b_{\lambda_1, \lambda_2} \]

Nearly all glasses are located on the normal line in a \(P-\nu \)-diagram

The slope of the normal line depends on the selection of wavelengths

Glasses apart from the normal line shows anomalous partial dispersion \(\Delta P \)

\[P_{\lambda_1, \lambda_2} = a_{\lambda_1, \lambda_2} \cdot \nu_d + b_{\lambda_1, \lambda_2} + \Delta P_{\lambda_1, \lambda_2} \]

these material are important for chromatical correction of higher order
Anomalous Partial Dispersion

- Arrows in the glass map: indication of the deviation from the normal line
- Vertical component: at the red horizontal: at the blue end of the spectrum

\[P_{\lambda_1 \lambda_2} = a_{\lambda_1 \lambda_2} \cdot v_d + b_{\lambda_1 \lambda_2} + \Delta P_{\lambda_1 \lambda_2} \]
Anomalous Partial Dispersion

- Normal glasses:
 Partial dispersion changes linear with Abbe number

- Definition of P depends on selected wavelengths

- Normal line defined by F2 and K7

- Deviation from linear behavior: anomalous partial dispersion ΔP
 \[P_{\lambda_1 \lambda_2} = a_{\lambda_1 \lambda_2} \cdot \nu_d + b_{\lambda_1 \lambda_2} + \Delta P_{\lambda_1 \lambda_2} \]

- The value of ΔP depends on the wavelength selection

- Typical ΔP considered at the red and the blue end of the visible spectrum

- Large deviation values ΔP are necessary for apochromatic chromatical correction

\[P_{C,t} = 0.5450 + 0.004743 \cdot \nu_d \]
\[P_{C,s} = 0.4029 + 0.002331 \cdot \nu_d \]
\[P_{F,e} = 0.4884 + 0.000526 \cdot \nu_d \]
\[P_{g,F} = 0.6438 + 0.001682 \cdot \nu_d \]
\[P_{i,g} = 1.7241 + 0.008382 \cdot \nu_d \]
- Preferred glass selection for apochromates

- N-SF1
- N-SF6
- N-SF57
- N-SF66
- P-SF68
- P-SF67

- N-FK51A
- N-PK52A
- N-PK51

- N-KZFS12
- N-KZFS4
- N-LAF33
- N-LASF41
- N-LAF37
- N-LAF21
- N-LAF35
- N-LAK10
- N-KZFS2
Residual Chromatical Aberrations

- Different states of chromatical correction
- Increasing number of zeros or coincident colors
- Reduced residual aberrations

Ref : F. Blechinger
- Effect of different materials
- Axial chromatical aberration changes with wavelength
- Different levels of correction:
 1. No correction: lens, one zero crossing point
 2. Achromatic correction:
 - coincidence of outer colors
 - remaining error for center wavelength
 - two zero crossing points
 3. Apochromatic correction:
 - coincidence of at least three colors
 - small residual aberrations
 - at least 3 zero crossing points
 - special choice of glass types with anomalous partial dispersion necessary
Apochromate

- Focal power condition

- Achromatic condition

- Secondary spectrum

- Curvatures of lenses

 \[c = \frac{1}{r_1} - \frac{1}{r_2} \]

- Parameter E

 \[F = F_1 + F_2 + F_3 \]

 \[\frac{F_1}{\nu_1} + \frac{F_2}{\nu_2} + \frac{F_3}{\nu_3} = 0 \]

 \[\frac{P_1 \cdot F_1}{\nu_1} + \frac{P_2 \cdot F_2}{\nu_2} + \frac{P_3 \cdot F_3}{\nu_3} = 0 \]

 \[c_a = \frac{1}{f \cdot E \cdot (v_a - v_c)} \cdot \frac{P_b - P_c}{n_{a,\lambda_1} - n_{a,\lambda_3}} \]

 \[c_b = \frac{1}{f \cdot E \cdot (v_a - v_c)} \cdot \frac{P_c - P_a}{n_{b,\lambda_1} - n_{b,\lambda_3}} \]

 \[c_c = \frac{1}{f \cdot E \cdot (v_a - v_c)} \cdot \frac{P_a - P_b}{n_{c,\lambda_1} - n_{c,\lambda_3}} \]

 \[E = \frac{1}{v_a - v_c} \cdot [v_a \cdot (P_b - P_c) + v_b \cdot (P_c - P_a) + v_c \cdot (P_a - P_b)] \]

- The 3 materials are not allowed to be on the normal line

- The triangle of the 3 points should be large: small \(c_j \) give relaxed design
- Choice of at least one special glass
- Correction of secondary spectrum: anomalous partial dispersion
- At least one glass should deviate significantly from the normal glass line
Splitted Achromates

- Split of cemented surface: reduced zonal residual aberration possible
- Larger distance of air gap: reduced spherochromatism
General Achromatization

- Contribution of a thin lens to the axial chromatical aberration

- Axial chromatical aberration of a system of thin lenses

- Condition of achromatization of a system of lenses

- Special case of lenses close together

- Condition of apochromatic (polychromatic) correction with the partial relative dispersion

\[
K_{lens}^{CHL} = \omega_j^2 \cdot \frac{F_j}{\nu_j} = \frac{\omega_j^2}{f'_j \cdot \nu_j}
\]

\[
\Delta s_{CHL}' = - \frac{s'^2}{\omega_N^2} \cdot \sum_j \omega_j^2 \cdot \frac{F_j}{\nu_j}
\]

\[
\sum_j \omega_j^2 \cdot \frac{F_j}{\nu_j} = 0
\]

\[
\sum_j \frac{F_j}{\nu_j} = 0
\]

\[
\sum_j \omega_j^2 \cdot \frac{P_j \cdot F_j}{\nu_j} = 0
\]
Two-Lens Apochromate

- Special glasses
- with anormal relative partial dispersion
- High refractive powers in the two components result in large spherical zonal aberration

Ref.: H. Zuegge
- Residual spherochromatism of an achromate
- Representation as function of aperture or wavelength
Spherochromatism

- Spherochromatism: variation of spherical aberration with wavelength, Alternative notation: Gaussian chromatical error
- Individual curve of spherical aberration with color
- Conventional achromate:
 - coinciding image location for red (C’) and blue (F’) on axis (paraxial)
 - differences and secondary spectrum for green (e)
 - but different intersection lengths for finite aperture rays
- Better balancing with half spherochromatism on axis
Spherochromatism

- Spherical aberration of a lens in 3rd order:

\[A_s = \frac{1}{32n(n-1)f^3} \left[\frac{n^3}{n-1} + \frac{n+2}{n-1} \left\{ X - \frac{2(n^2-1)}{n+2} M \right\}^2 - \frac{n^2(n-1)}{n+2} M^2 \right] \]

- Wavelength dependence of \(n \) induces spherochromatism

- Typical spectral variation of this aberration with wavelength

\[\Delta z \]

a) single lens

\[\Delta z \]

b) corrected